# 哈希算法 在上两节中,我们了解了哈希表的工作原理和哈希冲突的处理方法。然而无论是开放寻址还是链地址法,**它们只能保证哈希表可以在发生冲突时正常工作,但无法减少哈希冲突的发生**。 如果哈希冲突过于频繁,哈希表的性能则会急剧劣化。如下图所示,对于链地址哈希表,理想情况下键值对平均分布在各个桶中,达到最佳查询效率;最差情况下所有键值对都被存储到同一个桶中,时间复杂度退化至 $O(n)$ 。 ![哈希冲突的最佳与最差情况](hash_algorithm.assets/hash_collision_best_worst_condition.png) **键值对的分布情况由哈希函数决定**。回忆哈希函数的计算步骤,先计算哈希值,再对数组长度取模: ```shell index = hash(key) % capacity ``` 观察以上公式,当哈希表容量 `capacity` 固定时,**哈希算法 `hash()` 决定了输出值**,进而决定了键值对在哈希表中的分布情况。 这意味着,为了减小哈希冲突的发生概率,我们应当将注意力集中在哈希算法 `hash()` 的设计上。 ## 哈希算法的目标 为了实现“既快又稳”的哈希表数据结构,哈希算法应包含以下特点: - **确定性**:对于相同的输入,哈希算法应始终产生相同的输出。这样才能确保哈希表是可靠的。 - **效率高**:计算哈希值的过程应该足够快。计算开销越小,哈希表的实用性越高。 - **均匀分布**:哈希算法应使得键值对平均分布在哈希表中。分布越平均,哈希冲突的概率就越低。 实际上,哈希算法除了可以用于实现哈希表,还广泛应用于其他领域中。举两个例子: - **密码存储**:为了保护用户密码的安全,系统通常不会直接存储用户的明文密码,而是存储密码的哈希值。当用户输入密码时,系统会对输入的密码计算哈希值,然后与存储的哈希值进行比较。如果两者匹配,那么密码就被视为正确。 - **数据完整性检查**:数据发送方可以计算数据的哈希值并将其一同发送;接收方可以重新计算接收到的数据的哈希值,并与接收到的哈希值进行比较。如果两者匹配,那么数据就被视为完整的。 对于密码学的相关应用,哈希算法需要满足更高的安全标准,以防止从哈希值推导出原始密码等逆向工程,包括: - **抗碰撞性**:应当极其困难找到两个不同的输入,使得它们的哈希值相同。 - **雪崩效应**:输入的微小变化应当导致输出的显著且不可预测的变化。 请注意,**“均匀分布”与“抗碰撞性”是两个独立的概念**,满足均匀分布不一定满足抗碰撞性。例如,在随机输入 `key` 下,哈希函数 `key % 100` 可以产生均匀分布的输出。然而该哈希算法过于简单,所有后两位相等的 `key` 的输出都相同,因此我们可以很容易地从哈希值反推出可用的 `key` ,从而破解密码。 ## 哈希算法的设计 哈希算法的设计是一个复杂且需要考虑许多因素的问题。然而对于简单场景,我们也能设计一些简单的哈希算法。以字符串哈希为例: - **加法哈希**:对输入的每个字符的 ASCII 码进行相加,将得到的总和作为哈希值。 - **乘法哈希**:利用了乘法的不相关性,每轮乘以一个常数,将各个字符的 ASCII 码累积到哈希值中。 - **异或哈希**:将输入数据的每个元素通过异或操作累积到一个哈希值中。 - **旋转哈希**:将每个字符的 ASCII 码累积到一个哈希值中,每次累积之前都会对哈希值进行旋转操作。 === "Java" ```java title="simple_hash.java" [class]{simple_hash}-[func]{addHash} [class]{simple_hash}-[func]{mulHash} [class]{simple_hash}-[func]{xorHash} [class]{simple_hash}-[func]{rotHash} ``` === "C++" ```cpp title="simple_hash.cpp" [class]{}-[func]{addHash} [class]{}-[func]{mulHash} [class]{}-[func]{xorHash} [class]{}-[func]{rotHash} ``` === "Python" ```python title="simple_hash.py" [class]{}-[func]{add_hash} [class]{}-[func]{mul_hash} [class]{}-[func]{xor_hash} [class]{}-[func]{rot_hash} ``` === "Go" ```go title="simple_hash.go" [class]{}-[func]{addHash} [class]{}-[func]{mulHash} [class]{}-[func]{xorHash} [class]{}-[func]{rotHash} ``` === "JS" ```javascript title="simple_hash.js" [class]{}-[func]{addHash} [class]{}-[func]{mulHash} [class]{}-[func]{xorHash} [class]{}-[func]{rotHash} ``` === "TS" ```typescript title="simple_hash.ts" [class]{}-[func]{addHash} [class]{}-[func]{mulHash} [class]{}-[func]{xorHash} [class]{}-[func]{rotHash} ``` === "C" ```c title="simple_hash.c" [class]{}-[func]{addHash} [class]{}-[func]{mulHash} [class]{}-[func]{xorHash} [class]{}-[func]{rotHash} ``` === "C#" ```csharp title="simple_hash.cs" [class]{simple_hash}-[func]{addHash} [class]{simple_hash}-[func]{mulHash} [class]{simple_hash}-[func]{xorHash} [class]{simple_hash}-[func]{rotHash} ``` === "Swift" ```swift title="simple_hash.swift" [class]{}-[func]{addHash} [class]{}-[func]{mulHash} [class]{}-[func]{xorHash} [class]{}-[func]{rotHash} ``` === "Zig" ```zig title="simple_hash.zig" [class]{}-[func]{addHash} [class]{}-[func]{mulHash} [class]{}-[func]{xorHash} [class]{}-[func]{rotHash} ``` === "Dart" ```dart title="simple_hash.dart" [class]{}-[func]{addHash} [class]{}-[func]{mulHash} [class]{}-[func]{xorHash} [class]{}-[func]{rotHash} ``` === "Rust" ```rust title="simple_hash.rs" [class]{}-[func]{add_hash} [class]{}-[func]{mul_hash} [class]{}-[func]{xor_hash} [class]{}-[func]{rot_hash} ``` 观察发现,每种哈希算法的最后一步都是对大质数 $1000000007$ 取模,以确保哈希值在合适的范围内。值得思考的是,为什么要强调对质数取模,或者说对合数取模的弊端是什么?这是一个有趣的问题。 先抛出结论:**当我们使用大质数作为模数时,可以最大化地保证哈希值的均匀分布**。因为质数不会与其他数字存在公约数,可以减少因取模操作而产生的周期性模式,从而避免哈希冲突。 举个例子,假设我们选择合数 $9$ 作为模数,它可以被 $3$ 整除。那么所有可以被 $3$ 整除的 `key` 都会被映射到 $0$ , $3$ , $6$ 这三个哈希值。 $$ \begin{aligned} \text{modulus} & = 9 \newline \text{key} & = \{ 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, \dots \} \newline \text{hash} & = \{ 0, 3, 6, 0, 3, 6, 0, 3, 6, 0, 3, 6,\dots \} \end{aligned} $$ 如果输入 `key` 恰好满足这种等差数列的数据分布,那么哈希值就会出现聚堆,从而加重哈希冲突。现在,假设将 `modulus` 替换为质数 $13$ ,由于 `key` 和 `modulus` 之间不存在公约数,输出的哈希值的均匀性会明显提升。 $$ \begin{aligned} \text{modulus} & = 13 \newline \text{key} & = \{ 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, \dots \} \newline \text{hash} & = \{ 0, 3, 6, 9, 12, 2, 5, 8, 11, 1, 4, 7, \dots \} \end{aligned} $$ 值得说明的是,如果能够保证 `key` 是随机均匀分布的,那么选择质数或者合数作为模数都是可以的,它们都能输出均匀分布的哈希值。而当 `key` 的分布存在某种周期性时,对合数取模更容易出现聚集现象。 总而言之,我们通常选取质数作为模数,并且这个质数最好足够大,以尽可能消除周期性模式,提升哈希算法的稳健性。 ## 常见哈希算法 不难发现,以上介绍的简单哈希算法都比较“脆弱”,远远没有达到哈希算法的设计目标。例如,由于加法和异或满足交换律,因此加法哈希和异或哈希无法区分内容相同但顺序不同的字符串,这可能会加剧哈希冲突,并引起一些安全问题。 在实际中,我们通常会用一些标准哈希算法,例如 MD5 , SHA-1 , SHA-2 , SHA3 等。它们可以将任意长度的输入数据映射到恒定长度的哈希值。 近一个世纪以来,哈希算法处在不断升级与优化的过程中。一部分研究人员努力提升哈希算法的性能,另一部分研究人员和黑客则致力于寻找哈希算法的安全性问题。直至目前: - MD5 和 SHA-1 已多次被成功攻击,因此它们被各类安全应用弃用。 - SHA-2 系列中的 SHA-256 是最安全的哈希算法之一,仍未出现成功的攻击案例,因此常被用在各类安全应用与协议中。 - SHA-3 相较 SHA-2 的实现开销更低、计算效率更高,但目前使用覆盖度不如 SHA-2 系列。 | | MD5 | SHA-1 | SHA-2 | SHA-3 | | -------- | ------------------------------ | ---------------- | ---------------------------- | -------------------- | | 推出时间 | 1992 | 1995 | 2002 | 2008 | | 输出长度 | 128 bits | 160 bits | 256 / 512 bits | 224/256/384/512 bits | | 哈希冲突 | 较多 | 较多 | 很少 | 很少 | | 安全等级 | 低,已被成功攻击 | 低,已被成功攻击 | 高 | 高 | | 应用 | 已被弃用,仍用于数据完整性检查 | 已被弃用 | 加密货币交易验证、数字签名等 | 可用于替代 SHA-2 | ## 数据结构的哈希值 我们知道,哈希表的 `key` 可以是整数、小数或字符串等数据类型。编程语言通常会为这些数据类型提供内置的哈希算法,用于计算哈希表中的桶索引。以 Python 为例,我们可以调用 `hash()` 函数来计算各种数据类型的哈希值,包括: - 整数和布尔量的哈希值就是其本身。 - 浮点数和字符串的哈希值计算较为复杂,有兴趣的同学请自行学习。 - 元组的哈希值是对其中每一个元素进行哈希,然后将这些哈希值组合起来,得到单一的哈希值。 - 对象的哈希值基于其内存地址生成。通过重写对象的哈希方法,可实现基于内容生成哈希值。 !!! tip 请注意,不同编程语言的内置哈希值计算函数的定义和方法不同。 === "Java" ```java title="built_in_hash.java" int num = 3; int hashNum = Integer.hashCode(num); // 整数 3 的哈希值为 3 boolean bol = true; int hashBol = Boolean.hashCode(bol); // 布尔量 true 的哈希值为 1231 double dec = 3.14159; int hashDec = Double.hashCode(dec); // 小数 3.14159 的哈希值为 -1340954729 String str = "Hello 算法"; int hashStr = str.hashCode(); // 字符串 Hello 算法 的哈希值为 -727081396 Object[] arr = { 12836, "小哈" }; int hashTup = Arrays.hashCode(arr); // 数组 [12836, 小哈] 的哈希值为 1151158 ListNode obj = new ListNode(0); int hashObj = obj.hashCode(); // 节点对象 utils.ListNode@7dc5e7b4 的哈希值为 2110121908 ``` === "C++" ```cpp title="built_in_hash.cpp" int num = 3; size_t hashNum = hash()(num); // 整数 3 的哈希值为 3 bool bol = true; size_t hashBol = hash()(bol); // 布尔量 1 的哈希值为 1 double dec = 3.14159; size_t hashDec = hash()(dec); // 小数 3.14159 的哈希值为 4614256650576692846 string str = "Hello 算法"; size_t hashStr = hash()(str); // 字符串 Hello 算法 的哈希值为 15466937326284535026 // 在 C++ 中,内置 std:hash() 仅提供基本数据类型的哈希值计算 // 数组、对象的哈希值计算需要自行实现 ``` === "Python" ```python title="built_in_hash.py" num = 3 hash_num = hash(num) # 整数 3 的哈希值为 3 bol = True hash_bol = hash(bol) # 布尔量 True 的哈希值为 1 dec = 3.14159 hash_dec = hash(dec) # 小数 3.14159 的哈希值为 326484311674566659 str = "Hello 算法" hash_str = hash(str) # 字符串 Hello 算法 的哈希值为 4617003410720528961 tup = (12836, "小哈") hash_tup = hash(tup) # 元组 (12836, '小哈') 的哈希值为 1029005403108185979 obj = ListNode(0) hash_obj = hash(obj) # 节点对象 的哈希值为 274267521 ``` === "Go" ```go title="built_in_hash.go" ``` === "JS" ```javascript title="built_in_hash.js" ``` === "TS" ```typescript title="built_in_hash.ts" ``` === "C" ```c title="built_in_hash.c" ``` === "C#" ```csharp title="built_in_hash.cs" int num = 3; int hashNum = num.GetHashCode(); // 整数 3 的哈希值为 3; bool bol = true; int hashBol = bol.GetHashCode(); // 布尔量 true 的哈希值为 1; double dec = 3.14159; int hashDec = dec.GetHashCode(); // 小数 3.14159 的哈希值为 -1340954729; string str = "Hello 算法"; int hashStr = str.GetHashCode(); // 字符串 Hello 算法 的哈希值为 -586107568; object[] arr = { 12836, "小哈" }; int hashTup = arr.GetHashCode(); // 数组 [12836, 小哈] 的哈希值为 42931033; ListNode obj = new ListNode(0); int hashObj = obj.GetHashCode(); // 节点对象 0 的哈希值为 39053774; ``` === "Swift" ```swift title="built_in_hash.swift" let num = 3 let hashNum = num.hashValue // 整数 3 的哈希值为 9047044699613009734 let bol = true let hashBol = bol.hashValue // 布尔量 true 的哈希值为 -4431640247352757451 let dec = 3.14159 let hashDec = dec.hashValue // 小数 3.14159 的哈希值为 -2465384235396674631 let str = "Hello 算法" let hashStr = str.hashValue // 字符串 Hello 算法 的哈希值为 -7850626797806988787 let arr = [AnyHashable(12836), AnyHashable("小哈")] let hashTup = arr.hashValue // 数组 [AnyHashable(12836), AnyHashable("小哈")] 的哈希值为 -2308633508154532996 let obj = ListNode(x: 0) let hashObj = obj.hashValue // 节点对象 utils.ListNode 的哈希值为 -2434780518035996159 ``` === "Zig" ```zig title="built_in_hash.zig" ``` === "Dart" ```dart title="built_in_hash.dart" int num = 3; int hashNum = num.hashCode; // 整数 3 的哈希值为 34803 bool bol = true; int hashBol = bol.hashCode; // 布尔值 true 的哈希值为 1231 double dec = 3.14159; int hashDec = dec.hashCode; // 小数 3.14159 的哈希值为 2570631074981783 String str = "Hello 算法"; int hashStr = str.hashCode; // 字符串 Hello 算法 的哈希值为 468167534 List arr = [12836, "小哈"]; int hashArr = arr.hashCode; // 数组 [12836, 小哈] 的哈希值为 976512528 ListNode obj = new ListNode(0); int hashObj = obj.hashCode; // 节点对象 Instance of 'ListNode' 的哈希值为 1033450432 ``` === "Rust" ```rust title="built_in_hash.rs" ``` 在许多编程语言中,**只有不可变对象才可作为哈希表的 `key`** 。假如我们将列表(动态数组)作为 `key` ,当列表的内容发生变化时,它的哈希值也随之改变,我们就无法在哈希表中查询到原先的 `value` 了。 虽然自定义对象(比如链表节点)的成员变量是可变的,但它是可哈希的。**这是因为对象的哈希值通常是基于内存地址生成的**,即使对象的内容发生了变化,但它的内存地址不变,哈希值仍然是不变的。 细心的你可能发现在不同控制台中运行程序时,输出的哈希值是不同的。**这是因为 Python 解释器在每次启动时,都会为字符串哈希函数加入一个随机的盐(Salt)值**。这种做法可以有效防止 HashDoS 攻击,提升哈希算法的安全性。