---
comments: true
---
# 队列
「队列 Queue」是一种遵循「先入先出 first in, first out」数据操作规则的线性数据结构。顾名思义,队列模拟的是排队现象,即外面的人不断加入队列尾部,而处于队列头部的人不断地离开。
我们将队列头部称为「队首」,队列尾部称为「队尾」,将把元素加入队尾的操作称为「入队」,删除队首元素的操作称为「出队」。
![queue_operations](queue.assets/queue_operations.png)
Fig. 队列的先入先出特性
## 队列常用操作
队列的常用操作见下表(方法命名以 Java 为例)。
Table. 队列的常用操作
| 方法 | 描述 | 时间复杂度 |
| --------- | ---------------------------- | ---------- |
| offer() | 元素入队,即将元素添加至队尾 | $O(1)$ |
| poll() | 队首元素出队 | $O(1)$ |
| front() | 访问队首元素 | $O(1)$ |
| size() | 获取队列的长度 | $O(1)$ |
| isEmpty() | 判断队列是否为空 | $O(1)$ |
我们可以直接使用编程语言实现好的队列类。
=== "Java"
```java title="queue.java"
/* 初始化队列 */
Queue queue = new LinkedList<>();
/* 元素入队 */
queue.offer(1);
queue.offer(3);
queue.offer(2);
queue.offer(5);
queue.offer(4);
/* 访问队首元素 */
int peek = queue.peek();
/* 元素出队 */
int poll = queue.poll();
/* 获取队列的长度 */
int size = queue.size();
/* 判断队列是否为空 */
boolean isEmpty = queue.isEmpty();
```
=== "C++"
```cpp title="queue.cpp"
/* 初始化队列 */
queue queue;
/* 元素入队 */
queue.push(1);
queue.push(3);
queue.push(2);
queue.push(5);
queue.push(4);
/* 访问队首元素 */
int front = queue.front();
/* 元素出队 */
queue.pop();
/* 获取队列的长度 */
int size = queue.size();
/* 判断队列是否为空 */
bool empty = queue.empty();
```
=== "Python"
```python title="queue.py"
""" 初始化队列 """
# 在 Python 中,我们一般将双向队列类 deque 看作队列使用
# 虽然 queue.Queue() 是纯正的队列类,但不太好用,因此不建议
que = collections.deque()
""" 元素入队 """
que.append(1)
que.append(3)
que.append(2)
que.append(5)
que.append(4)
""" 访问队首元素 """
front = que[0];
""" 元素出队 """
pop = que.popleft()
""" 获取队列的长度 """
size = len(que)
""" 判断队列是否为空 """
is_empty = len(que) == 0
```
=== "Go"
```go title="queue_test.go"
/* 初始化队列 */
// 在 Go 中,将 list 作为队列来使用
queue := list.New()
/* 元素入队 */
queue.PushBack(1)
queue.PushBack(3)
queue.PushBack(2)
queue.PushBack(5)
queue.PushBack(4)
/* 访问队首元素 */
peek := queue.Front()
/* 元素出队 */
poll := queue.Front()
queue.Remove(poll)
/* 获取队列的长度 */
size := queue.Len()
/* 判断队列是否为空 */
isEmpty := queue.Len() == 0
```
=== "JavaScript"
```js title="queue.js"
/* 初始化队列 */
// JavaScript 没有内置的队列,可以把 Array 当作队列来使用
const queue = [];
/* 元素入队 */
queue.push(1);
queue.push(3);
queue.push(2);
queue.push(5);
queue.push(4);
/* 访问队首元素 */
const peek = queue[0];
/* 元素出队 */
// 底层是数组,因此 shift() 方法的时间复杂度为 O(n)
const poll = queue.shift();
/* 获取队列的长度 */
const size = queue.length;
/* 判断队列是否为空 */
const empty = queue.length === 0;
```
=== "TypeScript"
```typescript title="queue.ts"
/* 初始化队列 */
// TypeScript 没有内置的队列,可以把 Array 当作队列来使用
const queue: number[] = [];
/* 元素入队 */
queue.push(1);
queue.push(3);
queue.push(2);
queue.push(5);
queue.push(4);
/* 访问队首元素 */
const peek = queue[0];
/* 元素出队 */
// 底层是数组,因此 shift() 方法的时间复杂度为 O(n)
const poll = queue.shift();
/* 获取队列的长度 */
const size = queue.length;
/* 判断队列是否为空 */
const empty = queue.length === 0;
```
=== "C"
```c title="queue.c"
```
=== "C#"
```csharp title="queue.cs"
/* 初始化队列 */
Queue queue = new();
/* 元素入队 */
queue.Enqueue(1);
queue.Enqueue(3);
queue.Enqueue(2);
queue.Enqueue(5);
queue.Enqueue(4);
/* 访问队首元素 */
int peek = queue.Peek();
/* 元素出队 */
int poll = queue.Dequeue();
/* 获取队列的长度 */
int size = queue.Count();
/* 判断队列是否为空 */
bool isEmpty = queue.Count() == 0;
```
=== "Swift"
```swift title="queue.swift"
/* 初始化队列 */
// Swift 没有内置的队列类,可以把 Array 当作队列来使用
var queue: [Int] = []
/* 元素入队 */
queue.append(1)
queue.append(3)
queue.append(2)
queue.append(5)
queue.append(4)
/* 访问队首元素 */
let peek = queue.first!
/* 元素出队 */
// 使用 Array 模拟时 poll 的复杂度为 O(n)
let pool = queue.removeFirst()
/* 获取队列的长度 */
let size = queue.count
/* 判断队列是否为空 */
let isEmpty = queue.isEmpty
```
## 队列实现
队列需要一种可以在一端添加,并在另一端删除的数据结构,也可以使用链表或数组来实现。
### 基于链表的实现
我们将链表的「头结点」和「尾结点」分别看作是队首和队尾,并规定队尾只可添加结点,队首只可删除结点。
=== "LinkedListQueue"
![linkedlist_queue](queue.assets/linkedlist_queue.png)
=== "push()"
![linkedlist_queue_push](queue.assets/linkedlist_queue_push.png)
=== "poll()"
![linkedlist_queue_poll](queue.assets/linkedlist_queue_poll.png)
以下是使用链表实现队列的示例代码。
=== "Java"
```java title="linkedlist_queue.java"
/* 基于链表实现的队列 */
class LinkedListQueue {
private ListNode front, rear; // 头结点 front ,尾结点 rear
private int queSize = 0;
public LinkedListQueue() {
front = null;
rear = null;
}
/* 获取队列的长度 */
public int size() {
return queSize;
}
/* 判断队列是否为空 */
public boolean isEmpty() {
return size() == 0;
}
/* 入队 */
public void offer(int num) {
// 尾结点后添加 num
ListNode node = new ListNode(num);
// 如果队列为空,则令头、尾结点都指向该结点
if (front == null) {
front = node;
rear = node;
// 如果队列不为空,则将该结点添加到尾结点后
} else {
rear.next = node;
rear = node;
}
queSize++;
}
/* 出队 */
public int poll() {
int num = peek();
// 删除头结点
front = front.next;
queSize--;
return num;
}
/* 访问队首元素 */
public int peek() {
if (size() == 0)
throw new EmptyStackException();
return front.val;
}
}
```
=== "C++"
```cpp title="linkedlist_queue.cpp"
/* 基于链表实现的队列 */
class LinkedListQueue {
private:
ListNode *front, *rear; // 头结点 front ,尾结点 rear
int queSize;
public:
LinkedListQueue() {
front = nullptr;
rear = nullptr;
queSize = 0;
}
~LinkedListQueue() {
delete front;
delete rear;
}
/* 获取队列的长度 */
int size() {
return queSize;
}
/* 判断队列是否为空 */
bool empty() {
return queSize == 0;
}
/* 入队 */
void offer(int num) {
// 尾结点后添加 num
ListNode* node = new ListNode(num);
// 如果队列为空,则令头、尾结点都指向该结点
if (front == nullptr) {
front = node;
rear = node;
}
// 如果队列不为空,则将该结点添加到尾结点后
else {
rear->next = node;
rear = node;
}
queSize++;
}
/* 出队 */
void poll() {
int num = peek();
// 删除头结点
ListNode *tmp = front;
front = front->next;
// 释放内存
delete tmp;
queSize--;
}
/* 访问队首元素 */
int peek() {
if (size() == 0)
throw out_of_range("队列为空");
return front->val;
}
};
```
=== "Python"
```python title="linkedlist_queue.py"
""" 基于链表实现的队列 """
class LinkedListQueue:
def __init__(self):
self.__front = None # 头结点 front
self.__rear = None # 尾结点 rear
self.__size = 0
""" 获取队列的长度 """
def size(self):
return self.__size
""" 判断队列是否为空 """
def is_empty(self):
return not self.__front
""" 入队 """
def push(self, num):
# 尾结点后添加 num
node = ListNode(num)
# 如果队列为空,则令头、尾结点都指向该结点
if self.__front == 0:
self.__front = node
self.__rear = node
# 如果队列不为空,则将该结点添加到尾结点后
else:
self.__rear.next = node
self.__rear = node
self.__size += 1
""" 出队 """
def poll(self):
num = self.peek()
# 删除头结点
self.__front = self.__front.next
self.__size -= 1
return num
""" 访问队首元素 """
def peek(self):
if self.size() == 0:
print("队列为空")
return False
return self.__front.val
```
=== "Go"
```go title="linkedlist_queue.go"
/* 基于链表实现的队列 */
type linkedListQueue struct {
// 使用内置包 list 来实现队列
data *list.List
}
// newLinkedListQueue 初始化链表
func newLinkedListQueue() *linkedListQueue {
return &linkedListQueue{
data: list.New(),
}
}
// offer 入队
func (s *linkedListQueue) offer(value any) {
s.data.PushBack(value)
}
// poll 出队
func (s *linkedListQueue) poll() any {
if s.isEmpty() {
return nil
}
e := s.data.Front()
s.data.Remove(e)
return e.Value
}
// peek 访问队首元素
func (s *linkedListQueue) peek() any {
if s.isEmpty() {
return nil
}
e := s.data.Front()
return e.Value
}
// size 获取队列的长度
func (s *linkedListQueue) size() int {
return s.data.Len()
}
// isEmpty 判断队列是否为空
func (s *linkedListQueue) isEmpty() bool {
return s.data.Len() == 0
}
```
=== "JavaScript"
```js title="linkedlist_queue.js"
/* 基于链表实现的队列 */
class LinkedListQueue {
#front; // 头结点 #front
#rear; // 尾结点 #rear
#queSize = 0;
constructor() {
this.#front = null;
this.#rear = null;
}
/* 获取队列的长度 */
get size() {
return this.#queSize;
}
/* 判断队列是否为空 */
isEmpty() {
return this.size === 0;
}
/* 入队 */
offer(num) {
// 尾结点后添加 num
const node = new ListNode(num);
// 如果队列为空,则令头、尾结点都指向该结点
if (!this.#front) {
this.#front = node;
this.#rear = node;
// 如果队列不为空,则将该结点添加到尾结点后
} else {
this.#rear.next = node;
this.#rear = node;
}
this.#queSize++;
}
/* 出队 */
poll() {
const num = this.peek();
// 删除头结点
this.#front = this.#front.next;
this.#queSize--;
return num;
}
/* 访问队首元素 */
peek() {
if (this.size === 0)
throw new Error("队列为空");
return this.#front.val;
}
}
```
=== "TypeScript"
```typescript title="linkedlist_queue.ts"
/* 基于链表实现的队列 */
class LinkedListQueue {
private front: ListNode | null; // 头结点 front
private rear: ListNode | null; // 尾结点 rear
private queSize: number = 0;
constructor() {
this.front = null;
this.rear = null;
}
/* 获取队列的长度 */
get size(): number {
return this.queSize;
}
/* 判断队列是否为空 */
isEmpty(): boolean {
return this.size === 0;
}
/* 入队 */
offer(num: number): void {
// 尾结点后添加 num
const node = new ListNode(num);
// 如果队列为空,则令头、尾结点都指向该结点
if (!this.front) {
this.front = node;
this.rear = node;
// 如果队列不为空,则将该结点添加到尾结点后
} else {
this.rear!.next = node;
this.rear = node;
}
this.queSize++;
}
/* 出队 */
poll(): number {
const num = this.peek();
if (!this.front)
throw new Error("队列为空")
// 删除头结点
this.front = this.front.next;
this.queSize--;
return num;
}
/* 访问队首元素 */
peek(): number {
if (this.size === 0)
throw new Error("队列为空");
return this.front!.val;
}
}
```
=== "C"
```c title="linkedlist_queue.c"
```
=== "C#"
```csharp title="linkedlist_queue.cs"
/* 基于链表实现的队列 */
class LinkedListQueue
{
private ListNode? front, rear; // 头结点 front ,尾结点 rear
private int queSize = 0;
public LinkedListQueue()
{
front = null;
rear = null;
}
/* 获取队列的长度 */
public int size()
{
return queSize;
}
/* 判断队列是否为空 */
public bool isEmpty()
{
return size() == 0;
}
/* 入队 */
public void offer(int num)
{
// 尾结点后添加 num
ListNode node = new ListNode(num);
// 如果队列为空,则令头、尾结点都指向该结点
if (front == null)
{
front = node;
rear = node;
// 如果队列不为空,则将该结点添加到尾结点后
}
else if (rear != null)
{
rear.next = node;
rear = node;
}
queSize++;
}
/* 出队 */
public int poll()
{
int num = peek();
// 删除头结点
front = front?.next;
queSize--;
return num;
}
/* 访问队首元素 */
public int peek()
{
if (size() == 0 || front == null)
throw new Exception();
return front.val;
}
}
```
=== "Swift"
```swift title="linkedlist_queue.swift"
/* 基于链表实现的队列 */
class LinkedListQueue {
private var front: ListNode? // 头结点
private var rear: ListNode? // 尾结点
private var _size = 0
init() {}
/* 获取队列的长度 */
func size() -> Int {
_size
}
/* 判断队列是否为空 */
func isEmpty() -> Bool {
size() == 0
}
/* 入队 */
func offer(num: Int) {
// 尾结点后添加 num
let node = ListNode(x: num)
// 如果队列为空,则令头、尾结点都指向该结点
if front == nil {
front = node
rear = node
}
// 如果队列不为空,则将该结点添加到尾结点后
else {
rear?.next = node
rear = node
}
_size += 1
}
/* 出队 */
@discardableResult
func poll() -> Int {
let num = peek()
// 删除头结点
front = front?.next
_size -= 1
return num
}
/* 访问队首元素 */
func peek() -> Int {
if isEmpty() {
fatalError("队列为空")
}
return front!.val
}
}
```
### 基于数组的实现
数组的删除首元素的时间复杂度为 $O(n)$ ,因此不适合直接用来实现队列。然而,我们可以借助两个指针 `front` , `rear` 来分别记录队首和队尾的索引位置,在入队 / 出队时分别将 `front` / `rear` 向后移动一位即可,这样每次仅需操作一个元素,时间复杂度降至 $O(1)$ 。
=== "ArrayQueue"
![array_queue](queue.assets/array_queue.png)
=== "push()"
![array_queue_push](queue.assets/array_queue_push.png)
=== "poll()"
![array_queue_poll](queue.assets/array_queue_poll.png)
细心的同学可能会发现一个问题,即在入队与出队的过程中,两个指针都在向后移动,**在到达尾部后则无法继续移动了**。
为了解决此问题,我们可以采取一个取巧方案,**即将数组看作是“环形”的**。具体做法是规定指针越过数组尾部后,再次回到头部接续遍历,这样相当于使数组“首尾相连”了。在环形数组的设定下,获取长度 `size()` 、入队 `offer()` 、出队 `poll()` 方法都需要做相应的取余操作处理,使得当尾指针绕回数组头部时,仍然可以正确处理操作。
=== "Java"
```java title="array_queue.java"
/* 基于环形数组实现的队列 */
class ArrayQueue {
private int[] nums; // 用于存储队列元素的数组
private int front = 0; // 头指针,指向队首
private int rear = 0; // 尾指针,指向队尾 + 1
public ArrayQueue(int capacity) {
// 初始化数组
nums = new int[capacity];
}
/* 获取队列的容量 */
public int capacity() {
return nums.length;
}
/* 获取队列的长度 */
public int size() {
int capacity = capacity();
// 由于将数组看作为环形,可能 rear < front ,因此需要取余数
return (capacity + rear - front) % capacity;
}
/* 判断队列是否为空 */
public boolean isEmpty() {
return rear - front == 0;
}
/* 入队 */
public void offer(int num) {
if (size() == capacity()) {
System.out.println("队列已满");
return;
}
// 尾结点后添加 num
nums[rear] = num;
// 尾指针向后移动一位,越过尾部后返回到数组头部
rear = (rear + 1) % capacity();
}
/* 出队 */
public int poll() {
int num = peek();
// 队头指针向后移动一位,若越过尾部则返回到数组头部
front = (front + 1) % capacity();
return num;
}
/* 访问队首元素 */
public int peek() {
if (isEmpty())
throw new EmptyStackException();
return nums[front];
}
}
```
=== "C++"
```cpp title="array_queue.cpp"
/* 基于环形数组实现的队列 */
class ArrayQueue {
private:
int *nums; // 用于存储队列元素的数组
int cap; // 队列容量
int front = 0; // 头指针,指向队首
int rear = 0; // 尾指针,指向队尾 + 1
public:
ArrayQueue(int capacity) {
// 初始化数组
cap = capacity;
nums = new int[capacity];
}
~ArrayQueue() {
delete[] nums;
}
/* 获取队列的容量 */
int capacity() {
return cap;
}
/* 获取队列的长度 */
int size() {
// 由于将数组看作为环形,可能 rear < front ,因此需要取余数
return (capacity() + rear - front) % capacity();
}
/* 判断队列是否为空 */
bool empty() {
return rear - front == 0;
}
/* 入队 */
void offer(int num) {
if (size() == capacity()) {
cout << "队列已满" << endl;
return;
}
// 尾结点后添加 num
nums[rear] = num;
// 尾指针向后移动一位,越过尾部后返回到数组头部
rear = (rear + 1) % capacity();
}
/* 出队 */
void poll() {
int num = peek();
// 队头指针向后移动一位,若越过尾部则返回到数组头部
front = (front + 1) % capacity();
}
/* 访问队首元素 */
int peek() {
if (empty())
throw out_of_range("队列为空");
return nums[front];
}
};
```
=== "Python"
```python title="array_queue.py"
""" 基于环形数组实现的队列 """
class ArrayQueue:
def __init__(self, size):
self.__nums = [0] * size # 用于存储队列元素的数组
self.__front = 0 # 头指针,指向队首
self.__rear = 0 # 尾指针,指向队尾 + 1
""" 获取队列的容量 """
def capacity(self):
return len(self.__nums)
""" 获取队列的长度 """
def size(self):
# 由于将数组看作为环形,可能 rear < front ,因此需要取余数
return (self.capacity() + self.__rear - self.__front) % self.capacity()
""" 判断队列是否为空 """
def is_empty(self):
return (self.__rear - self.__front) == 0
""" 入队 """
def push(self, val):
if self.size() == self.capacity():
print("队列已满")
return False
# 尾结点后添加 num
self.__nums[self.__rear] = val
# 尾指针向后移动一位,越过尾部后返回到数组头部
self.__rear = (self.__rear + 1) % self.capacity()
""" 出队 """
def poll(self):
num = self.peek()
# 队头指针向后移动一位,若越过尾部则返回到数组头部
self.__front = (self.__front + 1) % self.capacity()
return num
""" 访问队首元素 """
def peek(self):
if self.is_empty():
print("队列为空")
return False
return self.__nums[self.__front]
""" 返回列表用于打印 """
def to_list(self):
res = [0] * self.size()
j = self.__front
for i in range(self.size()):
res[i] = self.__nums[(j % self.capacity())]
j += 1
return res
```
=== "Go"
```go title="array_queue.go"
/* 基于环形数组实现的队列 */
type arrayQueue struct {
data []int // 用于存储队列元素的数组
capacity int // 队列容量(即最多容量的元素个数)
front int // 头指针,指向队首
rear int // 尾指针,指向队尾 + 1
}
// newArrayQueue 基于环形数组实现的队列
func newArrayQueue(capacity int) *arrayQueue {
return &arrayQueue{
data: make([]int, capacity),
capacity: capacity,
front: 0,
rear: 0,
}
}
// size 获取队列的长度
func (q *arrayQueue) size() int {
size := (q.capacity + q.rear - q.front) % q.capacity
return size
}
// isEmpty 判断队列是否为空
func (q *arrayQueue) isEmpty() bool {
return q.rear-q.front == 0
}
// offer 入队
func (q *arrayQueue) offer(v int) {
// 当 rear == capacity 表示队列已满
if q.size() == q.capacity {
return
}
// 尾结点后添加
q.data[q.rear] = v
// 尾指针向后移动一位,越过尾部后返回到数组头部
q.rear = (q.rear + 1) % q.capacity
}
// poll 出队
func (q *arrayQueue) poll() any {
if q.isEmpty() {
return nil
}
v := q.data[q.front]
// 队头指针向后移动一位,若越过尾部则返回到数组头部
q.front = (q.front + 1) % q.capacity
return v
}
// peek 访问队首元素
func (q *arrayQueue) peek() any {
if q.isEmpty() {
return nil
}
v := q.data[q.front]
return v
}
```
=== "JavaScript"
```js title="array_queue.js"
/* 基于环形数组实现的队列 */
class ArrayQueue {
#queue; // 用于存储队列元素的数组
#front = 0; // 头指针,指向队首
#rear = 0; // 尾指针,指向队尾 + 1
constructor(capacity) {
this.#queue = new Array(capacity);
}
/* 获取队列的容量 */
get capacity() {
return this.#queue.length;
}
/* 获取队列的长度 */
get size() {
// 由于将数组看作为环形,可能 rear < front ,因此需要取余数
return (this.capacity + this.#rear - this.#front) % this.capacity;
}
/* 判断队列是否为空 */
empty() {
return this.#rear - this.#front == 0;
}
/* 入队 */
offer(num) {
if (this.size == this.capacity)
throw new Error("队列已满");
// 尾结点后添加 num
this.#queue[this.#rear] = num;
// 尾指针向后移动一位,越过尾部后返回到数组头部
this.#rear = (this.#rear + 1) % this.capacity;
}
/* 出队 */
poll() {
const num = this.peek();
// 队头指针向后移动一位,若越过尾部则返回到数组头部
this.#front = (this.#front + 1) % this.capacity;
return num;
}
/* 访问队首元素 */
peek() {
if (this.empty())
throw new Error("队列为空");
return this.#queue[this.#front];
}
}
```
=== "TypeScript"
```typescript title="array_queue.ts"
/* 基于环形数组实现的队列 */
class ArrayQueue {
private queue: number[]; // 用于存储队列元素的数组
private front: number = 0; // 头指针,指向队首
private rear: number = 0; // 尾指针,指向队尾 + 1
private CAPACITY: number = 1e5;
constructor(capacity?: number) {
this.queue = new Array(capacity ?? this.CAPACITY);
}
/* 获取队列的容量 */
get capacity(): number {
return this.queue.length;
}
/* 获取队列的长度 */
get size(): number {
// 由于将数组看作为环形,可能 rear < front ,因此需要取余数
return (this.capacity + this.rear - this.front) % this.capacity;
}
/* 判断队列是否为空 */
empty(): boolean {
return this.rear - this.front == 0;
}
/* 入队 */
offer(num: number): void {
if (this.size == this.capacity)
throw new Error("队列已满");
// 尾结点后添加 num
this.queue[this.rear] = num;
// 尾指针向后移动一位,越过尾部后返回到数组头部
this.rear = (this.rear + 1) % this.capacity;
}
/* 出队 */
poll(): number {
const num = this.peek();
// 队头指针向后移动一位,若越过尾部则返回到数组头部
this.front = (this.front + 1) % this.capacity;
return num;
}
/* 访问队首元素 */
peek(): number {
if (this.empty())
throw new Error("队列为空");
return this.queue[this.front];
}
}
```
=== "C"
```c title="array_queue.c"
```
=== "C#"
```csharp title="array_queue.cs"
/* 基于环形数组实现的队列 */
class ArrayQueue
{
private int[] nums; // 用于存储队列元素的数组
private int front = 0; // 头指针,指向队首
private int rear = 0; // 尾指针,指向队尾 + 1
public ArrayQueue(int capacity)
{
// 初始化数组
nums = new int[capacity];
}
/* 获取队列的容量 */
public int capacity()
{
return nums.Length;
}
/* 获取队列的长度 */
public int size()
{
int capacity = this.capacity();
// 由于将数组看作为环形,可能 rear < front ,因此需要取余数
return (capacity + rear - front) % capacity;
}
/* 判断队列是否为空 */
public bool isEmpty()
{
return rear - front == 0;
}
/* 入队 */
public void offer(int num)
{
if (size() == capacity())
{
Console.WriteLine("队列已满");
return;
}
// 尾结点后添加 num
nums[rear] = num;
// 尾指针向后移动一位,越过尾部后返回到数组头部
rear = (rear + 1) % capacity();
}
/* 出队 */
public int poll()
{
int num = peek();
// 队头指针向后移动一位,若越过尾部则返回到数组头部
front = (front + 1) % capacity();
return num;
}
/* 访问队首元素 */
public int peek()
{
if (isEmpty())
throw new Exception();
return nums[front];
}
}
```
=== "Swift"
```swift title="array_queue.swift"
/* 基于环形数组实现的队列 */
class ArrayQueue {
private var nums: [Int] // 用于存储队列元素的数组
private var front = 0 // 头指针,指向队首
private var rear = 0 // 尾指针,指向队尾 + 1
init(capacity: Int) {
// 初始化数组
nums = Array(repeating: 0, count: capacity)
}
/* 获取队列的容量 */
func capacity() -> Int {
nums.count
}
/* 获取队列的长度 */
func size() -> Int {
let capacity = capacity()
// 由于将数组看作为环形,可能 rear < front ,因此需要取余数
return (capacity + rear - front) % capacity
}
/* 判断队列是否为空 */
func isEmpty() -> Bool {
rear - front == 0
}
/* 入队 */
func offer(num: Int) {
if size() == capacity() {
print("队列已满")
return
}
// 尾结点后添加 num
nums[rear] = num
// 尾指针向后移动一位,越过尾部后返回到数组头部
rear = (rear + 1) % capacity()
}
/* 出队 */
@discardableResult
func poll() -> Int {
let num = peek()
// 队头指针向后移动一位,若越过尾部则返回到数组头部
front = (front + 1) % capacity()
return num
}
/* 访问队首元素 */
func peek() -> Int {
if isEmpty() {
fatalError("队列为空")
}
return nums[front]
}
}
```
以上代码仍存在局限性,即长度不可变。然而,我们可以通过将数组替换为列表(即动态数组)来引入扩容机制,有兴趣的同学可以尝试实现。
## 两种实现对比
与栈的结论一致,在此不再赘述。
## 队列典型应用
- **淘宝订单**。购物者下单后,订单就被加入到队列之中,随后系统再根据顺序依次处理队列中的订单。在双十一时,在短时间内会产生海量的订单,如何处理「高并发」则是工程师们需要重点思考的问题。
- **各种待办事项**。例如打印机的任务队列、餐厅的出餐队列等等。