--- comments: true --- # 7.2. 二叉树遍历 从物理结构的角度来看,树是一种基于链表的数据结构,因此其遍历方式是通过指针逐个访问节点。然而,树是一种非线性数据结构,这使得遍历树比遍历链表更加复杂,需要借助搜索算法来实现。 二叉树常见的遍历方式包括层序遍历、前序遍历、中序遍历和后序遍历等。 ## 7.2.1. 层序遍历 「层序遍历 Level-Order Traversal」从顶部到底部逐层遍历二叉树,并在每一层按照从左到右的顺序访问节点。 层序遍历本质上属于「广度优先搜索 Breadth-First Traversal」,它体现了一种“一圈一圈向外扩展”的逐层搜索方式。 ![二叉树的层序遍历](binary_tree_traversal.assets/binary_tree_bfs.png)
Fig. 二叉树的层序遍历
广度优先遍历通常借助「队列」来实现。队列遵循“先进先出”的规则,而广度优先遍历则遵循“逐层推进”的规则,两者背后的思想是一致的。 === "Java" ```java title="binary_tree_bfs.java" /* 层序遍历 */ ListFig. 二叉搜索树的前、中、后序遍历
以下给出了实现代码,请配合上图理解深度优先遍历的递归过程。 === "Java" ```java title="binary_tree_dfs.java" /* 前序遍历 */ void preOrder(TreeNode root) { if (root == null) return; // 访问优先级:根节点 -> 左子树 -> 右子树 list.add(root.val); preOrder(root.left); preOrder(root.right); } /* 中序遍历 */ void inOrder(TreeNode root) { if (root == null) return; // 访问优先级:左子树 -> 根节点 -> 右子树 inOrder(root.left); list.add(root.val); inOrder(root.right); } /* 后序遍历 */ void postOrder(TreeNode root) { if (root == null) return; // 访问优先级:左子树 -> 右子树 -> 根节点 postOrder(root.left); postOrder(root.right); list.add(root.val); } ``` === "C++" ```cpp title="binary_tree_dfs.cpp" /* 前序遍历 */ void preOrder(TreeNode *root) { if (root == nullptr) return; // 访问优先级:根节点 -> 左子树 -> 右子树 vec.push_back(root->val); preOrder(root->left); preOrder(root->right); } /* 中序遍历 */ void inOrder(TreeNode *root) { if (root == nullptr) return; // 访问优先级:左子树 -> 根节点 -> 右子树 inOrder(root->left); vec.push_back(root->val); inOrder(root->right); } /* 后序遍历 */ void postOrder(TreeNode *root) { if (root == nullptr) return; // 访问优先级:左子树 -> 右子树 -> 根节点 postOrder(root->left); postOrder(root->right); vec.push_back(root->val); } ``` === "Python" ```python title="binary_tree_dfs.py" def pre_order(root: TreeNode | None) -> None: """前序遍历""" if root is None: return # 访问优先级:根节点 -> 左子树 -> 右子树 res.append(root.val) pre_order(root=root.left) pre_order(root=root.right) def in_order(root: TreeNode | None) -> None: """中序遍历""" if root is None: return # 访问优先级:左子树 -> 根节点 -> 右子树 in_order(root=root.left) res.append(root.val) in_order(root=root.right) def post_order(root: TreeNode | None) -> None: """后序遍历""" if root is None: return # 访问优先级:左子树 -> 右子树 -> 根节点 post_order(root=root.left) post_order(root=root.right) res.append(root.val) ``` === "Go" ```go title="binary_tree_dfs.go" /* 前序遍历 */ func preOrder(node *TreeNode) { if node == nil { return } // 访问优先级:根节点 -> 左子树 -> 右子树 nums = append(nums, node.Val) preOrder(node.Left) preOrder(node.Right) } /* 中序遍历 */ func inOrder(node *TreeNode) { if node == nil { return } // 访问优先级:左子树 -> 根节点 -> 右子树 inOrder(node.Left) nums = append(nums, node.Val) inOrder(node.Right) } /* 后序遍历 */ func postOrder(node *TreeNode) { if node == nil { return } // 访问优先级:左子树 -> 右子树 -> 根节点 postOrder(node.Left) postOrder(node.Right) nums = append(nums, node.Val) } ``` === "JavaScript" ```javascript title="binary_tree_dfs.js" /* 前序遍历 */ function preOrder(root) { if (root === null) return; // 访问优先级:根节点 -> 左子树 -> 右子树 list.push(root.val); preOrder(root.left); preOrder(root.right); } /* 中序遍历 */ function inOrder(root) { if (root === null) return; // 访问优先级:左子树 -> 根节点 -> 右子树 inOrder(root.left); list.push(root.val); inOrder(root.right); } /* 后序遍历 */ function postOrder(root) { if (root === null) return; // 访问优先级:左子树 -> 右子树 -> 根节点 postOrder(root.left); postOrder(root.right); list.push(root.val); } ``` === "TypeScript" ```typescript title="binary_tree_dfs.ts" /* 前序遍历 */ function preOrder(root: TreeNode | null): void { if (root === null) { return; } // 访问优先级:根节点 -> 左子树 -> 右子树 list.push(root.val); preOrder(root.left); preOrder(root.right); } /* 中序遍历 */ function inOrder(root: TreeNode | null): void { if (root === null) { return; } // 访问优先级:左子树 -> 根节点 -> 右子树 inOrder(root.left); list.push(root.val); inOrder(root.right); } /* 后序遍历 */ function postOrder(root: TreeNode | null): void { if (root === null) { return; } // 访问优先级:左子树 -> 右子树 -> 根节点 postOrder(root.left); postOrder(root.right); list.push(root.val); } ``` === "C" ```c title="binary_tree_dfs.c" /* 前序遍历 */ void preOrder(TreeNode *root, int *size) { if (root == NULL) return; // 访问优先级:根节点 -> 左子树 -> 右子树 arr[(*size)++] = root->val; preOrder(root->left, size); preOrder(root->right, size); } /* 中序遍历 */ void inOrder(TreeNode *root, int *size) { if (root == NULL) return; // 访问优先级:左子树 -> 根节点 -> 右子树 inOrder(root->left, size); arr[(*size)++] = root->val; inOrder(root->right, size); } /* 后序遍历 */ void postOrder(TreeNode *root, int *size) { if (root == NULL) return; // 访问优先级:左子树 -> 右子树 -> 根节点 postOrder(root->left, size); postOrder(root->right, size); arr[(*size)++] = root->val; } ``` === "C#" ```csharp title="binary_tree_dfs.cs" /* 前序遍历 */ void preOrder(TreeNode? root) { if (root == null) return; // 访问优先级:根节点 -> 左子树 -> 右子树 list.Add(root.val); preOrder(root.left); preOrder(root.right); } /* 中序遍历 */ void inOrder(TreeNode? root) { if (root == null) return; // 访问优先级:左子树 -> 根节点 -> 右子树 inOrder(root.left); list.Add(root.val); inOrder(root.right); } /* 后序遍历 */ void postOrder(TreeNode? root) { if (root == null) return; // 访问优先级:左子树 -> 右子树 -> 根节点 postOrder(root.left); postOrder(root.right); list.Add(root.val); } ``` === "Swift" ```swift title="binary_tree_dfs.swift" /* 前序遍历 */ func preOrder(root: TreeNode?) { guard let root = root else { return } // 访问优先级:根节点 -> 左子树 -> 右子树 list.append(root.val) preOrder(root: root.left) preOrder(root: root.right) } /* 中序遍历 */ func inOrder(root: TreeNode?) { guard let root = root else { return } // 访问优先级:左子树 -> 根节点 -> 右子树 inOrder(root: root.left) list.append(root.val) inOrder(root: root.right) } /* 后序遍历 */ func postOrder(root: TreeNode?) { guard let root = root else { return } // 访问优先级:左子树 -> 右子树 -> 根节点 postOrder(root: root.left) postOrder(root: root.right) list.append(root.val) } ``` === "Zig" ```zig title="binary_tree_dfs.zig" // 前序遍历 fn preOrder(comptime T: type, root: ?*inc.TreeNode(T)) !void { if (root == null) return; // 访问优先级:根节点 -> 左子树 -> 右子树 try list.append(root.?.val); try preOrder(T, root.?.left); try preOrder(T, root.?.right); } // 中序遍历 fn inOrder(comptime T: type, root: ?*inc.TreeNode(T)) !void { if (root == null) return; // 访问优先级:左子树 -> 根节点 -> 右子树 try inOrder(T, root.?.left); try list.append(root.?.val); try inOrder(T, root.?.right); } // 后序遍历 fn postOrder(comptime T: type, root: ?*inc.TreeNode(T)) !void { if (root == null) return; // 访问优先级:左子树 -> 右子树 -> 根节点 try postOrder(T, root.?.left); try postOrder(T, root.?.right); try list.append(root.?.val); } ``` === "Dart" ```dart title="binary_tree_dfs.dart" /* 前序遍历 */ void preOrder(TreeNode? node) { if (node == null) return; // 访问优先级:根节点 -> 左子树 -> 右子树 list.add(node.val); preOrder(node.left); preOrder(node.right); } /* 中序遍历 */ void inOrder(TreeNode? node) { if (node == null) return; // 访问优先级:左子树 -> 根节点 -> 右子树 inOrder(node.left); list.add(node.val); inOrder(node.right); } /* 后序遍历 */ void postOrder(TreeNode? node) { if (node == null) return; // 访问优先级:左子树 -> 右子树 -> 根节点 postOrder(node.left); postOrder(node.right); list.add(node.val); } ``` **时间复杂度**:所有节点被访问一次,使用 $O(n)$ 时间,其中 $n$ 为节点数量。 **空间复杂度**:在最差情况下,即树退化为链表时,递归深度达到 $n$ ,系统占用 $O(n)$ 栈帧空间。 !!! note 我们也可以不使用递归,仅基于迭代实现前、中、后序遍历,有兴趣的同学可以自行研究。 下图展示了前序遍历二叉树的递归过程,其可分为“递”和“归”两个逆向的部分: 1. “递”表示开启新方法,程序在此过程中访问下一个节点。 2. “归”表示函数返回,代表当前节点已经访问完毕。 === "<1>" ![前序遍历的递归过程](binary_tree_traversal.assets/preorder_step1.png) === "<2>" ![preorder_step2](binary_tree_traversal.assets/preorder_step2.png) === "<3>" ![preorder_step3](binary_tree_traversal.assets/preorder_step3.png) === "<4>" ![preorder_step4](binary_tree_traversal.assets/preorder_step4.png) === "<5>" ![preorder_step5](binary_tree_traversal.assets/preorder_step5.png) === "<6>" ![preorder_step6](binary_tree_traversal.assets/preorder_step6.png) === "<7>" ![preorder_step7](binary_tree_traversal.assets/preorder_step7.png) === "<8>" ![preorder_step8](binary_tree_traversal.assets/preorder_step8.png) === "<9>" ![preorder_step9](binary_tree_traversal.assets/preorder_step9.png) === "<10>" ![preorder_step10](binary_tree_traversal.assets/preorder_step10.png) === "<11>" ![preorder_step11](binary_tree_traversal.assets/preorder_step11.png)