// File: binary_search_tree.zig // Created Time: 2023-01-15 // Author: codingonion (coderonion@gmail.com) const std = @import("std"); const inc = @import("include"); // 二元搜尋樹 pub fn BinarySearchTree(comptime T: type) type { return struct { const Self = @This(); root: ?*inc.TreeNode(T) = null, mem_arena: ?std.heap.ArenaAllocator = null, mem_allocator: std.mem.Allocator = undefined, // 記憶體分配器 // 建構子 pub fn init(self: *Self, allocator: std.mem.Allocator, nums: []T) !void { if (self.mem_arena == null) { self.mem_arena = std.heap.ArenaAllocator.init(allocator); self.mem_allocator = self.mem_arena.?.allocator(); } std.mem.sort(T, nums, {}, comptime std.sort.asc(T)); // 排序陣列 self.root = try self.buildTree(nums, 0, nums.len - 1); // 構建二元搜尋樹 } // 析構方法 pub fn deinit(self: *Self) void { if (self.mem_arena == null) return; self.mem_arena.?.deinit(); } // 構建二元搜尋樹 fn buildTree(self: *Self, nums: []T, i: usize, j: usize) !?*inc.TreeNode(T) { if (i > j) return null; // 將陣列中間節點作為根節點 var mid = (i + j) / 2; var node = try self.mem_allocator.create(inc.TreeNode(T)); node.init(nums[mid]); // 遞迴建立左子樹和右子樹 if (mid >= 1) node.left = try self.buildTree(nums, i, mid - 1); node.right = try self.buildTree(nums, mid + 1, j); return node; } // 獲取二元樹根節點 fn getRoot(self: *Self) ?*inc.TreeNode(T) { return self.root; } // 查詢節點 fn search(self: *Self, num: T) ?*inc.TreeNode(T) { var cur = self.root; // 迴圈查詢,越過葉節點後跳出 while (cur != null) { // 目標節點在 cur 的右子樹中 if (cur.?.val < num) { cur = cur.?.right; // 目標節點在 cur 的左子樹中 } else if (cur.?.val > num) { cur = cur.?.left; // 找到目標節點,跳出迴圈 } else { break; } } // 返回目標節點 return cur; } // 插入節點 fn insert(self: *Self, num: T) !void { // 若樹為空,則初始化根節點 if (self.root == null) { self.root = try self.mem_allocator.create(inc.TreeNode(T)); return; } var cur = self.root; var pre: ?*inc.TreeNode(T) = null; // 迴圈查詢,越過葉節點後跳出 while (cur != null) { // 找到重複節點,直接返回 if (cur.?.val == num) return; pre = cur; // 插入位置在 cur 的右子樹中 if (cur.?.val < num) { cur = cur.?.right; // 插入位置在 cur 的左子樹中 } else { cur = cur.?.left; } } // 插入節點 var node = try self.mem_allocator.create(inc.TreeNode(T)); node.init(num); if (pre.?.val < num) { pre.?.right = node; } else { pre.?.left = node; } } // 刪除節點 fn remove(self: *Self, num: T) void { // 若樹為空,直接提前返回 if (self.root == null) return; var cur = self.root; var pre: ?*inc.TreeNode(T) = null; // 迴圈查詢,越過葉節點後跳出 while (cur != null) { // 找到待刪除節點,跳出迴圈 if (cur.?.val == num) break; pre = cur; // 待刪除節點在 cur 的右子樹中 if (cur.?.val < num) { cur = cur.?.right; // 待刪除節點在 cur 的左子樹中 } else { cur = cur.?.left; } } // 若無待刪除節點,則直接返回 if (cur == null) return; // 子節點數量 = 0 or 1 if (cur.?.left == null or cur.?.right == null) { // 當子節點數量 = 0 / 1 時, child = null / 該子節點 var child = if (cur.?.left != null) cur.?.left else cur.?.right; // 刪除節點 cur if (pre.?.left == cur) { pre.?.left = child; } else { pre.?.right = child; } // 子節點數量 = 2 } else { // 獲取中序走訪中 cur 的下一個節點 var tmp = cur.?.right; while (tmp.?.left != null) { tmp = tmp.?.left; } var tmp_val = tmp.?.val; // 遞迴刪除節點 tmp self.remove(tmp.?.val); // 用 tmp 覆蓋 cur cur.?.val = tmp_val; } } }; } // Driver Code pub fn main() !void { // 初始化二元樹 var nums = [_]i32{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }; var bst = BinarySearchTree(i32){}; try bst.init(std.heap.page_allocator, &nums); defer bst.deinit(); std.debug.print("初始化的二元樹為\n", .{}); try inc.PrintUtil.printTree(bst.getRoot(), null, false); // 查詢節點 var node = bst.search(7); std.debug.print("\n查詢到的節點物件為 {any},節點值 = {}\n", .{node, node.?.val}); // 插入節點 try bst.insert(16); std.debug.print("\n插入節點 16 後,二元樹為\n", .{}); try inc.PrintUtil.printTree(bst.getRoot(), null, false); // 刪除節點 bst.remove(1); std.debug.print("\n刪除節點 1 後,二元樹為\n", .{}); try inc.PrintUtil.printTree(bst.getRoot(), null, false); bst.remove(2); std.debug.print("\n刪除節點 2 後,二元樹為\n", .{}); try inc.PrintUtil.printTree(bst.getRoot(), null, false); bst.remove(4); std.debug.print("\n刪除節點 4 後,二元樹為\n", .{}); try inc.PrintUtil.printTree(bst.getRoot(), null, false); _ = try std.io.getStdIn().reader().readByte(); }