mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-25 01:36:29 +08:00
build
This commit is contained in:
parent
b3c757c9f4
commit
f986ae3c8c
5 changed files with 372 additions and 12 deletions
|
@ -1130,7 +1130,80 @@ comments: true
|
|||
=== "Ruby"
|
||||
|
||||
```ruby title="graph_adjacency_matrix.rb"
|
||||
[class]{GraphAdjMat}-[func]{}
|
||||
### 基于邻接矩阵实现的无向图类 ###
|
||||
class GraphAdjMat
|
||||
def initialize(vertices, edges)
|
||||
### 构造方法 ###
|
||||
# 顶点列表,元素代表“顶点值”,索引代表“顶点索引”
|
||||
@vertices = []
|
||||
# 邻接矩阵,行列索引对应“顶点索引”
|
||||
@adj_mat = []
|
||||
# 添加顶点
|
||||
vertices.each { |val| add_vertex(val) }
|
||||
# 添加边
|
||||
# 请注意,edges 元素代表顶点索引,即对应 vertices 元素索引
|
||||
edges.each { |e| add_edge(e[0], e[1]) }
|
||||
end
|
||||
|
||||
### 获取顶点数量 ###
|
||||
def size
|
||||
@vertices.length
|
||||
end
|
||||
|
||||
### 添加顶点 ###
|
||||
def add_vertex(val)
|
||||
n = size
|
||||
# 向顶点列表中添加新顶点的值
|
||||
@vertices << val
|
||||
# 在邻接矩阵中添加一行
|
||||
new_row = Array.new(n, 0)
|
||||
@adj_mat << new_row
|
||||
# 在邻接矩阵中添加一列
|
||||
@adj_mat.each { |row| row << 0 }
|
||||
end
|
||||
|
||||
### 删除顶点 ###
|
||||
def remove_vertex(index)
|
||||
raise IndexError if index >= size
|
||||
|
||||
# 在顶点列表中移除索引 index 的顶点
|
||||
@vertices.delete_at(index)
|
||||
# 在邻接矩阵中删除索引 index 的行
|
||||
@adj_mat.delete_at(index)
|
||||
# 在邻接矩阵中删除索引 index 的列
|
||||
@adj_mat.each { |row| row.delete_at(index) }
|
||||
end
|
||||
|
||||
### 添加边 ###
|
||||
def add_edge(i, j)
|
||||
# 参数 i, j 对应 vertices 元素索引
|
||||
# 索引越界与相等处理
|
||||
if i < 0 || j < 0 || i >= size || j >= size || i == j
|
||||
raise IndexError
|
||||
end
|
||||
# 在无向图中,邻接矩阵关于主对角线对称,即满足 (i, j) == (j, i)
|
||||
@adj_mat[i][j] = 1
|
||||
@adj_mat[j][i] = 1
|
||||
end
|
||||
|
||||
### 删除边 ###
|
||||
def remove_edge(i, j)
|
||||
# 参数 i, j 对应 vertices 元素索引
|
||||
# 索引越界与相等处理
|
||||
if i < 0 || j < 0 || i >= size || j >= size || i == j
|
||||
raise IndexError
|
||||
end
|
||||
@adj_mat[i][j] = 0
|
||||
@adj_mat[j][i] = 0
|
||||
end
|
||||
|
||||
### 打印邻接矩阵 ###
|
||||
def __print__
|
||||
puts "顶点列表 = #{@vertices}"
|
||||
puts '邻接矩阵 ='
|
||||
print_matrix(@adj_mat)
|
||||
end
|
||||
end
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
@ -2233,7 +2306,73 @@ comments: true
|
|||
=== "Ruby"
|
||||
|
||||
```ruby title="graph_adjacency_list.rb"
|
||||
[class]{GraphAdjList}-[func]{}
|
||||
### 基于邻接表实现的无向图类 ###
|
||||
class GraphAdjList
|
||||
attr_reader :adj_list
|
||||
|
||||
### 构造方法 ###
|
||||
def initialize(edges)
|
||||
# 邻接表,key:顶点,value:该顶点的所有邻接顶点
|
||||
@adj_list = {}
|
||||
# 添加所有顶点和边
|
||||
for edge in edges
|
||||
add_vertex(edge[0])
|
||||
add_vertex(edge[1])
|
||||
add_edge(edge[0], edge[1])
|
||||
end
|
||||
end
|
||||
|
||||
### 获取顶点数量 ###
|
||||
def size
|
||||
@adj_list.length
|
||||
end
|
||||
|
||||
### 添加边 ###
|
||||
def add_edge(vet1, vet2)
|
||||
raise ArgumentError if !@adj_list.include?(vet1) || !@adj_list.include?(vet2)
|
||||
|
||||
@adj_list[vet1] << vet2
|
||||
@adj_list[vet2] << vet1
|
||||
end
|
||||
|
||||
### 删除边 ###
|
||||
def remove_edge(vet1, vet2)
|
||||
raise ArgumentError if !@adj_list.include?(vet1) || !@adj_list.include?(vet2)
|
||||
|
||||
# 删除边 vet1 - vet2
|
||||
@adj_list[vet1].delete(vet2)
|
||||
@adj_list[vet2].delete(vet1)
|
||||
end
|
||||
|
||||
### 添加顶点 ###
|
||||
def add_vertex(vet)
|
||||
return if @adj_list.include?(vet)
|
||||
|
||||
# 在邻接表中添加一个新链表
|
||||
@adj_list[vet] = []
|
||||
end
|
||||
|
||||
### 删除顶点 ###
|
||||
def remove_vertex(vet)
|
||||
raise ArgumentError unless @adj_list.include?(vet)
|
||||
|
||||
# 在邻接表中删除顶点 vet 对应的链表
|
||||
@adj_list.delete(vet)
|
||||
# 遍历其他顶点的链表,删除所有包含 vet 的边
|
||||
for vertex in @adj_list
|
||||
@adj_list[vertex.first].delete(vet) if @adj_list[vertex.first].include?(vet)
|
||||
end
|
||||
end
|
||||
|
||||
### 打印邻接表 ###
|
||||
def __print__
|
||||
puts '邻接表 ='
|
||||
for vertex in @adj_list
|
||||
tmp = @adj_list[vertex.first].map { |v| v.val }
|
||||
puts "#{vertex.first.val}: #{tmp},"
|
||||
end
|
||||
end
|
||||
end
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
|
|
@ -447,7 +447,29 @@ BFS 通常借助队列来实现,代码如下所示。队列具有“先入先
|
|||
=== "Ruby"
|
||||
|
||||
```ruby title="graph_bfs.rb"
|
||||
[class]{}-[func]{graph_bfs}
|
||||
### 广度优先遍历 ###
|
||||
def graph_bfs(graph, start_vet)
|
||||
# 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
|
||||
# 顶点遍历序列
|
||||
res = []
|
||||
# 哈希表,用于记录已被访问过的顶点
|
||||
visited = Set.new([start_vet])
|
||||
# 队列用于实现 BFS
|
||||
que = [start_vet]
|
||||
# 以顶点 vet 为起点,循环直至访问完所有顶点
|
||||
while que.length > 0
|
||||
vet = que.shift # 队首顶点出队
|
||||
res << vet # 记录访问顶点
|
||||
# 遍历该顶点的所有邻接顶点
|
||||
for adj_vet in graph.adj_list[vet]
|
||||
next if visited.include?(adj_vet) # 跳过已被访问的顶点
|
||||
que << adj_vet # 只入队未访问的顶点
|
||||
visited.add(adj_vet) # 标记该顶点已被访问
|
||||
end
|
||||
end
|
||||
# 返回顶点遍历序列
|
||||
res
|
||||
end
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
@ -892,9 +914,28 @@ BFS 通常借助队列来实现,代码如下所示。队列具有“先入先
|
|||
=== "Ruby"
|
||||
|
||||
```ruby title="graph_dfs.rb"
|
||||
[class]{}-[func]{dfs}
|
||||
### 深度优先遍历辅助函数 ###
|
||||
def dfs(graph, visited, res, vet)
|
||||
res << vet # 记录访问顶点
|
||||
visited.add(vet) # 标记该顶点已被访问
|
||||
# 遍历该顶点的所有邻接顶点
|
||||
for adj_vet in graph.adj_list[vet]
|
||||
next if visited.include?(adj_vet) # 跳过已被访问的顶点
|
||||
# 递归访问邻接顶点
|
||||
dfs(graph, visited, res, adj_vet)
|
||||
end
|
||||
end
|
||||
|
||||
[class]{}-[func]{graph_dfs}
|
||||
### 深度优先遍历 ###
|
||||
def graph_dfs(graph, start_vet)
|
||||
# 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
|
||||
# 顶点遍历序列
|
||||
res = []
|
||||
# 哈希表,用于记录已被访问过的顶点
|
||||
visited = Set.new
|
||||
dfs(graph, visited, res, start_vet)
|
||||
res
|
||||
end
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
|
|
@ -1130,7 +1130,80 @@ Below is the implementation code for graphs represented using an adjacency matri
|
|||
=== "Ruby"
|
||||
|
||||
```ruby title="graph_adjacency_matrix.rb"
|
||||
[class]{GraphAdjMat}-[func]{}
|
||||
### 基于邻接矩阵实现的无向图类 ###
|
||||
class GraphAdjMat
|
||||
def initialize(vertices, edges)
|
||||
### 构造方法 ###
|
||||
# 顶点列表,元素代表“顶点值”,索引代表“顶点索引”
|
||||
@vertices = []
|
||||
# 邻接矩阵,行列索引对应“顶点索引”
|
||||
@adj_mat = []
|
||||
# 添加顶点
|
||||
vertices.each { |val| add_vertex(val) }
|
||||
# 添加边
|
||||
# 请注意,edges 元素代表顶点索引,即对应 vertices 元素索引
|
||||
edges.each { |e| add_edge(e[0], e[1]) }
|
||||
end
|
||||
|
||||
### 获取顶点数量 ###
|
||||
def size
|
||||
@vertices.length
|
||||
end
|
||||
|
||||
### 添加顶点 ###
|
||||
def add_vertex(val)
|
||||
n = size
|
||||
# 向顶点列表中添加新顶点的值
|
||||
@vertices << val
|
||||
# 在邻接矩阵中添加一行
|
||||
new_row = Array.new(n, 0)
|
||||
@adj_mat << new_row
|
||||
# 在邻接矩阵中添加一列
|
||||
@adj_mat.each { |row| row << 0 }
|
||||
end
|
||||
|
||||
### 删除顶点 ###
|
||||
def remove_vertex(index)
|
||||
raise IndexError if index >= size
|
||||
|
||||
# 在顶点列表中移除索引 index 的顶点
|
||||
@vertices.delete_at(index)
|
||||
# 在邻接矩阵中删除索引 index 的行
|
||||
@adj_mat.delete_at(index)
|
||||
# 在邻接矩阵中删除索引 index 的列
|
||||
@adj_mat.each { |row| row.delete_at(index) }
|
||||
end
|
||||
|
||||
### 添加边 ###
|
||||
def add_edge(i, j)
|
||||
# 参数 i, j 对应 vertices 元素索引
|
||||
# 索引越界与相等处理
|
||||
if i < 0 || j < 0 || i >= size || j >= size || i == j
|
||||
raise IndexError
|
||||
end
|
||||
# 在无向图中,邻接矩阵关于主对角线对称,即满足 (i, j) == (j, i)
|
||||
@adj_mat[i][j] = 1
|
||||
@adj_mat[j][i] = 1
|
||||
end
|
||||
|
||||
### 删除边 ###
|
||||
def remove_edge(i, j)
|
||||
# 参数 i, j 对应 vertices 元素索引
|
||||
# 索引越界与相等处理
|
||||
if i < 0 || j < 0 || i >= size || j >= size || i == j
|
||||
raise IndexError
|
||||
end
|
||||
@adj_mat[i][j] = 0
|
||||
@adj_mat[j][i] = 0
|
||||
end
|
||||
|
||||
### 打印邻接矩阵 ###
|
||||
def __print__
|
||||
puts "顶点列表 = #{@vertices}"
|
||||
puts '邻接矩阵 ='
|
||||
print_matrix(@adj_mat)
|
||||
end
|
||||
end
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
@ -2233,7 +2306,73 @@ Additionally, we use the `Vertex` class to represent vertices in the adjacency l
|
|||
=== "Ruby"
|
||||
|
||||
```ruby title="graph_adjacency_list.rb"
|
||||
[class]{GraphAdjList}-[func]{}
|
||||
### 基于邻接表实现的无向图类 ###
|
||||
class GraphAdjList
|
||||
attr_reader :adj_list
|
||||
|
||||
### 构造方法 ###
|
||||
def initialize(edges)
|
||||
# 邻接表,key:顶点,value:该顶点的所有邻接顶点
|
||||
@adj_list = {}
|
||||
# 添加所有顶点和边
|
||||
for edge in edges
|
||||
add_vertex(edge[0])
|
||||
add_vertex(edge[1])
|
||||
add_edge(edge[0], edge[1])
|
||||
end
|
||||
end
|
||||
|
||||
### 获取顶点数量 ###
|
||||
def size
|
||||
@adj_list.length
|
||||
end
|
||||
|
||||
### 添加边 ###
|
||||
def add_edge(vet1, vet2)
|
||||
raise ArgumentError if !@adj_list.include?(vet1) || !@adj_list.include?(vet2)
|
||||
|
||||
@adj_list[vet1] << vet2
|
||||
@adj_list[vet2] << vet1
|
||||
end
|
||||
|
||||
### 删除边 ###
|
||||
def remove_edge(vet1, vet2)
|
||||
raise ArgumentError if !@adj_list.include?(vet1) || !@adj_list.include?(vet2)
|
||||
|
||||
# 删除边 vet1 - vet2
|
||||
@adj_list[vet1].delete(vet2)
|
||||
@adj_list[vet2].delete(vet1)
|
||||
end
|
||||
|
||||
### 添加顶点 ###
|
||||
def add_vertex(vet)
|
||||
return if @adj_list.include?(vet)
|
||||
|
||||
# 在邻接表中添加一个新链表
|
||||
@adj_list[vet] = []
|
||||
end
|
||||
|
||||
### 删除顶点 ###
|
||||
def remove_vertex(vet)
|
||||
raise ArgumentError unless @adj_list.include?(vet)
|
||||
|
||||
# 在邻接表中删除顶点 vet 对应的链表
|
||||
@adj_list.delete(vet)
|
||||
# 遍历其他顶点的链表,删除所有包含 vet 的边
|
||||
for vertex in @adj_list
|
||||
@adj_list[vertex.first].delete(vet) if @adj_list[vertex.first].include?(vet)
|
||||
end
|
||||
end
|
||||
|
||||
### 打印邻接表 ###
|
||||
def __print__
|
||||
puts '邻接表 ='
|
||||
for vertex in @adj_list
|
||||
tmp = @adj_list[vertex.first].map { |v| v.val }
|
||||
puts "#{vertex.first.val}: #{tmp},"
|
||||
end
|
||||
end
|
||||
end
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
|
|
@ -447,7 +447,29 @@ To prevent revisiting vertices, we use a hash table `visited` to record which no
|
|||
=== "Ruby"
|
||||
|
||||
```ruby title="graph_bfs.rb"
|
||||
[class]{}-[func]{graph_bfs}
|
||||
### 广度优先遍历 ###
|
||||
def graph_bfs(graph, start_vet)
|
||||
# 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
|
||||
# 顶点遍历序列
|
||||
res = []
|
||||
# 哈希表,用于记录已被访问过的顶点
|
||||
visited = Set.new([start_vet])
|
||||
# 队列用于实现 BFS
|
||||
que = [start_vet]
|
||||
# 以顶点 vet 为起点,循环直至访问完所有顶点
|
||||
while que.length > 0
|
||||
vet = que.shift # 队首顶点出队
|
||||
res << vet # 记录访问顶点
|
||||
# 遍历该顶点的所有邻接顶点
|
||||
for adj_vet in graph.adj_list[vet]
|
||||
next if visited.include?(adj_vet) # 跳过已被访问的顶点
|
||||
que << adj_vet # 只入队未访问的顶点
|
||||
visited.add(adj_vet) # 标记该顶点已被访问
|
||||
end
|
||||
end
|
||||
# 返回顶点遍历序列
|
||||
res
|
||||
end
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
@ -892,9 +914,28 @@ This "go as far as possible and then return" algorithm paradigm is usually imple
|
|||
=== "Ruby"
|
||||
|
||||
```ruby title="graph_dfs.rb"
|
||||
[class]{}-[func]{dfs}
|
||||
### 深度优先遍历辅助函数 ###
|
||||
def dfs(graph, visited, res, vet)
|
||||
res << vet # 记录访问顶点
|
||||
visited.add(vet) # 标记该顶点已被访问
|
||||
# 遍历该顶点的所有邻接顶点
|
||||
for adj_vet in graph.adj_list[vet]
|
||||
next if visited.include?(adj_vet) # 跳过已被访问的顶点
|
||||
# 递归访问邻接顶点
|
||||
dfs(graph, visited, res, adj_vet)
|
||||
end
|
||||
end
|
||||
|
||||
[class]{}-[func]{graph_dfs}
|
||||
### 深度优先遍历 ###
|
||||
def graph_dfs(graph, start_vet)
|
||||
# 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
|
||||
# 顶点遍历序列
|
||||
res = []
|
||||
# 哈希表,用于记录已被访问过的顶点
|
||||
visited = Set.new
|
||||
dfs(graph, visited, res, start_vet)
|
||||
res
|
||||
end
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
|
|
@ -9,9 +9,9 @@ icon: material/graph-outline
|
|||
|
||||
!!! abstract
|
||||
|
||||
The towering tree, full of vitality with its roots deep and leaves lush, branches spreading wide.
|
||||
The towering tree, vibrant with it's deep roots and lush leaves, branches spreading wide.
|
||||
|
||||
It vividly demonstrates the form of data divide-and-conquer.
|
||||
It vividly illustrates the concept of divide-and-conquer in data.
|
||||
|
||||
## Chapter contents
|
||||
|
||||
|
|
Loading…
Reference in a new issue