mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-25 01:16:31 +08:00
Update codes of heap.java and my_heap.java
This commit is contained in:
parent
e8f7d8f8ba
commit
ecabb4077b
7 changed files with 307 additions and 16 deletions
60
codes/java/chapter_heap/heap.java
Normal file
60
codes/java/chapter_heap/heap.java
Normal file
|
@ -0,0 +1,60 @@
|
|||
/**
|
||||
* File: my_heap.java
|
||||
* Created Time: 2023-01-07
|
||||
* Author: Krahets (krahets@163.com)
|
||||
*/
|
||||
|
||||
package chapter_heap;
|
||||
|
||||
import include.*;
|
||||
import java.util.*;
|
||||
|
||||
|
||||
public class heap {
|
||||
public static void testPush(Queue<Integer> heap, int val) {
|
||||
// 元素入堆
|
||||
heap.add(val);
|
||||
|
||||
System.out.format("\n添加元素 %d 后\n", val);
|
||||
PrintUtil.printHeap(heap);
|
||||
}
|
||||
|
||||
public static void testPoll(Queue<Integer> heap) {
|
||||
// 元素出堆
|
||||
int val = heap.poll();
|
||||
|
||||
System.out.format("\n出堆元素为 %d\n", val);
|
||||
PrintUtil.printHeap(heap);
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
/* 初始化堆 */
|
||||
// 初始化最小堆
|
||||
Queue<Integer> minHeap = new PriorityQueue<>();
|
||||
// 初始化最大堆(使用 lambda 表达式修改 Comparator)
|
||||
Queue<Integer> maxHeap = new PriorityQueue<>((a, b) -> { return b - a; });
|
||||
|
||||
/* 元素入堆 */
|
||||
testPush(maxHeap, 1);
|
||||
testPush(maxHeap, 3);
|
||||
testPush(maxHeap, 2);
|
||||
testPush(maxHeap, 5);
|
||||
testPush(maxHeap, 4);
|
||||
|
||||
/* 获取堆顶元素 */
|
||||
int peek = maxHeap.peek();
|
||||
System.out.format("\n堆顶元素为 %d\n", peek);
|
||||
|
||||
/* 元素出堆 */
|
||||
testPoll(maxHeap);
|
||||
testPoll(maxHeap);
|
||||
|
||||
/* 获取堆大小 */
|
||||
int size = maxHeap.size();
|
||||
System.out.format("\n堆元素数量为 %d\n", size);
|
||||
|
||||
/* 判断堆是否为空 */
|
||||
boolean isEmpty = maxHeap.isEmpty();
|
||||
System.out.format("\n堆是否为空 %b\n", isEmpty);
|
||||
}
|
||||
}
|
170
codes/java/chapter_heap/my_heap.java
Normal file
170
codes/java/chapter_heap/my_heap.java
Normal file
|
@ -0,0 +1,170 @@
|
|||
/**
|
||||
* File: my_heap.java
|
||||
* Created Time: 2023-01-07
|
||||
* Author: Krahets (krahets@163.com)
|
||||
*/
|
||||
|
||||
package chapter_heap;
|
||||
|
||||
import include.*;
|
||||
import java.util.*;
|
||||
|
||||
class MaxHeap {
|
||||
// 使用列表而非数组,这样无需考虑扩容问题
|
||||
private List<Integer> maxHeap;
|
||||
|
||||
/* 构造函数,建立空堆 */
|
||||
public MaxHeap() {
|
||||
maxHeap = new ArrayList<>();
|
||||
}
|
||||
|
||||
/* 构造函数,堆化 nums 所有元素 */
|
||||
public MaxHeap(List<Integer> nums) {
|
||||
// 将元素拷贝至堆中
|
||||
maxHeap = new ArrayList<>(nums);
|
||||
// 堆化除叶结点以外的其他所有结点
|
||||
for (int i = parent(size() - 1); i >= 0; i--) {
|
||||
heapify(i);
|
||||
}
|
||||
}
|
||||
|
||||
/* 获取左子结点索引 */
|
||||
private int left(int i) {
|
||||
return 2 * i + 1;
|
||||
}
|
||||
|
||||
/* 获取右子结点索引 */
|
||||
private int right(int i) {
|
||||
return 2 * i + 2;
|
||||
}
|
||||
|
||||
/* 获取父结点索引 */
|
||||
private int parent(int i) {
|
||||
return (i - 1) / 2;
|
||||
}
|
||||
|
||||
/* 交换元素 */
|
||||
private void swap(int i, int j) {
|
||||
int a = maxHeap.get(i),
|
||||
b = maxHeap.get(j),
|
||||
tmp = a;
|
||||
maxHeap.set(i, b);
|
||||
maxHeap.set(j, tmp);
|
||||
}
|
||||
|
||||
/* 获取堆大小 */
|
||||
public int size() {
|
||||
return maxHeap.size();
|
||||
}
|
||||
|
||||
/* 判断堆是否为空 */
|
||||
public boolean isEmpty() {
|
||||
return size() == 0;
|
||||
}
|
||||
|
||||
/* 访问堆顶元素 */
|
||||
public int peek() {
|
||||
return maxHeap.get(0);
|
||||
}
|
||||
|
||||
/* 元素入堆 */
|
||||
public void push(int val) {
|
||||
// 添加结点
|
||||
maxHeap.add(val);
|
||||
// 从底至顶堆化
|
||||
int i = size() - 1;
|
||||
while (true) {
|
||||
int p = parent(i);
|
||||
if (p < 0 || maxHeap.get(i) <= maxHeap.get(p))
|
||||
break;
|
||||
swap(i, p);
|
||||
i = p;
|
||||
}
|
||||
}
|
||||
|
||||
/* 元素出堆 */
|
||||
public int poll() {
|
||||
// 判空处理
|
||||
if (isEmpty())
|
||||
throw new EmptyStackException();
|
||||
// 交换根结点与右下角(即最后一个)结点
|
||||
swap(0, size() - 1);
|
||||
// 删除结点
|
||||
int val = maxHeap.remove(size() - 1);
|
||||
// 从顶至底堆化
|
||||
heapify(0);
|
||||
// 返回堆顶元素
|
||||
return val;
|
||||
}
|
||||
|
||||
/* 从结点 i 开始,从顶至底堆化 */
|
||||
private void heapify(int i) {
|
||||
while (true) {
|
||||
// 判断结点 i, l, r 中值最大的结点,记为 ma ;
|
||||
int l = left(i), r = right(i), ma = i;
|
||||
if (l < size() && maxHeap.get(l) > maxHeap.get(ma)) ma = l;
|
||||
if (r < size() && maxHeap.get(r) > maxHeap.get(ma)) ma = r;
|
||||
// 若结点 i 最大,则无需继续堆化,跳出
|
||||
if (ma == i) break;
|
||||
// 交换结点 i 与结点 max
|
||||
swap(i, ma);
|
||||
// 循环向下堆化
|
||||
i = ma;
|
||||
}
|
||||
}
|
||||
|
||||
/* 打印堆(二叉树) */
|
||||
public void print() {
|
||||
Queue<Integer> queue = new PriorityQueue<>((a, b) -> { return b - a; });
|
||||
queue.addAll(maxHeap);
|
||||
PrintUtil.printHeap(queue);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
public class my_heap {
|
||||
public static void testPush(MaxHeap maxHeap, int val) {
|
||||
// 元素入堆
|
||||
maxHeap.push(val);
|
||||
|
||||
System.out.format("\n添加元素 %d 后\n", val);
|
||||
maxHeap.print();
|
||||
}
|
||||
|
||||
public static void testPoll(MaxHeap maxHeap) {
|
||||
// 元素出堆
|
||||
int val = maxHeap.poll();
|
||||
|
||||
System.out.format("\n出堆元素为 %d\n", val);
|
||||
maxHeap.print();
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
/* 初始化堆 */
|
||||
// 初始化最大堆
|
||||
MaxHeap maxHeap = new MaxHeap();
|
||||
|
||||
/* 元素入堆 */
|
||||
testPush(maxHeap, 1);
|
||||
testPush(maxHeap, 3);
|
||||
testPush(maxHeap, 2);
|
||||
testPush(maxHeap, 5);
|
||||
testPush(maxHeap, 4);
|
||||
|
||||
/* 获取堆顶元素 */
|
||||
int peek = maxHeap.peek();
|
||||
System.out.format("\n堆顶元素为 %d\n", peek);
|
||||
|
||||
/* 元素出堆 */
|
||||
testPoll(maxHeap);
|
||||
testPoll(maxHeap);
|
||||
|
||||
/* 获取堆大小 */
|
||||
int size = maxHeap.size();
|
||||
System.out.format("\n堆元素数量为 %d\n", size);
|
||||
|
||||
/* 判断堆是否为空 */
|
||||
boolean isEmpty = maxHeap.isEmpty();
|
||||
System.out.format("\n堆是否为空 %b\n", isEmpty);
|
||||
}
|
||||
}
|
|
@ -30,7 +30,7 @@ public class binary_tree_bfs {
|
|||
public static void main(String[] args) {
|
||||
/* 初始化二叉树 */
|
||||
// 这里借助了一个从数组直接生成二叉树的函数
|
||||
TreeNode root = TreeNode.arrToTree(new Integer[] { 1, 2, 3, 4, 5, 6, 7 });
|
||||
TreeNode root = TreeNode.listToTree(Arrays.asList(1, 2, 3, 4, 5, 6, 7));
|
||||
System.out.println("\n初始化二叉树\n");
|
||||
PrintUtil.printTree(root);
|
||||
|
||||
|
|
|
@ -43,7 +43,7 @@ public class binary_tree_dfs {
|
|||
public static void main(String[] args) {
|
||||
/* 初始化二叉树 */
|
||||
// 这里借助了一个从数组直接生成二叉树的函数
|
||||
TreeNode root = TreeNode.arrToTree(new Integer[] { 1, 2, 3, 4, 5, 6, 7 });
|
||||
TreeNode root = TreeNode.listToTree(Arrays.asList(1, 2, 3, 4, 5, 6, 7));
|
||||
System.out.println("\n初始化二叉树\n");
|
||||
PrintUtil.printTree(root);
|
||||
|
||||
|
|
|
@ -105,10 +105,16 @@ public class PrintUtil {
|
|||
}
|
||||
}
|
||||
|
||||
public static void printHeap(PriorityQueue<Integer> queue) {
|
||||
Integer[] nums = (Integer[])queue.toArray();
|
||||
TreeNode root = TreeNode.arrToTree(nums);
|
||||
|
||||
/**
|
||||
* Print a heap (PriorityQueue)
|
||||
* @param queue
|
||||
*/
|
||||
public static void printHeap(Queue<Integer> queue) {
|
||||
List<Integer> list = new ArrayList<>(queue);
|
||||
System.out.print("堆的数组表示:");
|
||||
System.out.println(list);
|
||||
System.out.println("堆的树状表示:");
|
||||
TreeNode root = TreeNode.listToTree(list);
|
||||
printTree(root);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -23,26 +23,27 @@ public class TreeNode {
|
|||
|
||||
/**
|
||||
* Generate a binary tree given an array
|
||||
* @param arr
|
||||
* @param list
|
||||
* @return
|
||||
*/
|
||||
public static TreeNode arrToTree(Integer[] arr) {
|
||||
if (arr.length == 0)
|
||||
public static TreeNode listToTree(List<Integer> list) {
|
||||
int size = list.size();
|
||||
if (size == 0)
|
||||
return null;
|
||||
|
||||
TreeNode root = new TreeNode(arr[0]);
|
||||
TreeNode root = new TreeNode(list.get(0));
|
||||
Queue<TreeNode> queue = new LinkedList<>() {{ add(root); }};
|
||||
int i = 0;
|
||||
while(!queue.isEmpty()) {
|
||||
TreeNode node = queue.poll();
|
||||
if (++i >= arr.length) break;
|
||||
if(arr[i] != null) {
|
||||
node.left = new TreeNode(arr[i]);
|
||||
if (++i >= size) break;
|
||||
if (list.get(i) != null) {
|
||||
node.left = new TreeNode(list.get(i));
|
||||
queue.add(node.left);
|
||||
}
|
||||
if (++i >= arr.length) break;
|
||||
if(arr[i] != null) {
|
||||
node.right = new TreeNode(arr[i]);
|
||||
if (++i >= size) break;
|
||||
if (list.get(i) != null) {
|
||||
node.right = new TreeNode(list.get(i));
|
||||
queue.add(node.right);
|
||||
}
|
||||
}
|
||||
|
|
54
docs/chapter_heap/heap.md
Normal file
54
docs/chapter_heap/heap.md
Normal file
|
@ -0,0 +1,54 @@
|
|||
# 堆
|
||||
|
||||
「堆 Heap」是一种特殊的树状数据结构,并且是一颗「完全二叉树」。堆主要分为两种:
|
||||
|
||||
- 「大顶堆 Max Heap」,任意结点的值 $\geq$ 其子结点的值,因此根结点的值最大;
|
||||
- 「小顶堆 Min Heap」,任意结点的值 $\leq$ 其子结点的值,因此根结点的值最小;
|
||||
|
||||
(图)
|
||||
|
||||
!!! tip ""
|
||||
|
||||
大顶堆和小顶堆的定义、性质、操作本质上是相同的,区别只是大顶堆在求最大值,小顶堆在求最小值。
|
||||
|
||||
## 堆常用操作
|
||||
|
||||
值得说明的是,多数编程语言提供的是「优先队列 Priority Queue」,其是一种抽象数据结构,**定义为具有出队优先级的队列**。
|
||||
|
||||
而恰好,堆的定义与优先队列的操作逻辑完全吻合,大顶堆就是一个元素从大到小出队的优先队列。从使用角度看,我们可以将「优先队列」和「堆」理解为等价的数据结构,下文将统一使用 “堆” 这个名称。
|
||||
|
||||
堆的常用操作见下表(方法命名以 Java 为例)。
|
||||
|
||||
<p align="center"> Table. 堆的常用操作 </p>
|
||||
|
||||
<div class="center-table" markdown>
|
||||
|
||||
| 方法 | 描述 |
|
||||
| --------- | -------------------------------------------- |
|
||||
| add() | 元素入堆 |
|
||||
| poll() | 堆顶元素出堆 |
|
||||
| peek() | 访问堆顶元素(大 / 小顶堆分别为最大 / 小值) |
|
||||
| size() | 获取堆的元素数量 |
|
||||
| isEmpty() | 判断堆是否为空 |
|
||||
|
||||
</div>
|
||||
|
||||
```java
|
||||
|
||||
```
|
||||
|
||||
## 堆的实现
|
||||
|
||||
!!! tip
|
||||
|
||||
下文使用「大顶堆」来举例,「小顶堆」的用法与实现可以简单地将所有 $>$ ($<$) 替换为 $<$ ($>$) 即可。
|
||||
|
||||
我们一般使用「数组」来存储「堆」,这是因为完全二叉树非常适合用数组来表示(在二叉树章节有详细解释)。
|
||||
|
||||
|
||||
|
||||
## 堆常见应用
|
||||
|
||||
- 优先队列。
|
||||
- 堆排序。
|
||||
- 获取数据 Top K 大(小)元素。
|
Loading…
Reference in a new issue