lint: var to let

This commit is contained in:
RiverTwilight 2023-01-02 20:52:15 +08:00
parent db2a91bd93
commit d3e15a8856
2 changed files with 175 additions and 21 deletions

View file

@ -6,24 +6,24 @@
/* 常数阶 */ /* 常数阶 */
function constant(n) { function constant(n) {
var count = 0; let count = 0;
const size = 100000; const size = 100000;
for (var i = 0; i < size; i++) count++; for (let i = 0; i < size; i++) count++;
return count; return count;
} }
/* 线性阶 */ /* 线性阶 */
function linear(n) { function linear(n) {
var count = 0; let count = 0;
for (var i = 0; i < n; i++) count++; for (let i = 0; i < n; i++) count++;
return count; return count;
} }
/* 线性阶(遍历数组) */ /* 线性阶(遍历数组) */
function arrayTraversal(nums) { function arrayTraversal(nums) {
var count = 0; let count = 0;
// 循环次数与数组长度成正比 // 循环次数与数组长度成正比
for (var i = 0; i < nums.length; i++) { for (let i = 0; i < nums.length; i++) {
count++; count++;
} }
return count; return count;
@ -31,9 +31,9 @@ function arrayTraversal(nums) {
/* 平方阶 */ /* 平方阶 */
function quadratic(n) { function quadratic(n) {
var count = 0; let count = 0;
// 循环次数与数组长度成平方关系 // 循环次数与数组长度成平方关系
for (var i = 0; i < n; i++) { for (let i = 0; i < n; i++) {
for (let j = 0; j < n; j++) { for (let j = 0; j < n; j++) {
count++; count++;
} }
@ -43,9 +43,9 @@ function quadratic(n) {
/* 平方阶(冒泡排序) */ /* 平方阶(冒泡排序) */
function bubbleSort(nums) { function bubbleSort(nums) {
var count = 0; // 计数器 let count = 0; // 计数器
// 外循环:待排序元素数量为 n-1, n-2, ..., 1 // 外循环:待排序元素数量为 n-1, n-2, ..., 1
for (var i = nums.length - 1; i > 0; i--) { for (let i = nums.length - 1; i > 0; i--) {
// 内循环:冒泡操作 // 内循环:冒泡操作
for (let j = 0; j < i; j++) { for (let j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) { if (nums[j] > nums[j + 1]) {
@ -62,10 +62,10 @@ function bubbleSort(nums) {
/* 指数阶(循环实现) */ /* 指数阶(循环实现) */
function exponential(n) { function exponential(n) {
var count = 0, let count = 0,
base = 1; base = 1;
// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1) // cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
for (var i = 0; i < n; i++) { for (let i = 0; i < n; i++) {
for (let j = 0; j < base; j++) { for (let j = 0; j < base; j++) {
count++; count++;
} }
@ -83,7 +83,7 @@ function expRecur(n) {
/* 对数阶(循环实现) */ /* 对数阶(循环实现) */
function logarithmic(n) { function logarithmic(n) {
var count = 0; let count = 0;
while (n > 1) { while (n > 1) {
n = n / 2; n = n / 2;
count++; count++;
@ -100,8 +100,8 @@ function logRecur(n) {
/* 线性对数阶 */ /* 线性对数阶 */
function linearLogRecur(n) { function linearLogRecur(n) {
if (n <= 1) return 1; if (n <= 1) return 1;
var count = linearLogRecur(n / 2) + linearLogRecur(n / 2); let count = linearLogRecur(n / 2) + linearLogRecur(n / 2);
for (var i = 0; i < n; i++) { for (let i = 0; i < n; i++) {
count++; count++;
} }
return count; return count;
@ -110,18 +110,18 @@ function linearLogRecur(n) {
/* 阶乘阶(递归实现) */ /* 阶乘阶(递归实现) */
function factorialRecur(n) { function factorialRecur(n) {
if (n == 0) return 1; if (n == 0) return 1;
var count = 0; let count = 0;
// 从 1 个分裂出 n 个 // 从 1 个分裂出 n 个
for (var i = 0; i < n; i++) { for (let i = 0; i < n; i++) {
count += factorialRecur(n - 1); count += factorialRecur(n - 1);
} }
return count; return count;
} }
var n = 8; let n = 8;
console.log("输入数据大小 n = " + n); console.log("输入数据大小 n = " + n);
var count = constant(n); let count = constant(n);
console.log("常数阶的计算操作数量 = " + count); console.log("常数阶的计算操作数量 = " + count);
count = linear(n); count = linear(n);
@ -131,8 +131,8 @@ console.log("线性阶(遍历数组)的计算操作数量 = " + count);
count = quadratic(n); count = quadratic(n);
console.log("平方阶的计算操作数量 = " + count); console.log("平方阶的计算操作数量 = " + count);
var nums = new Array(n); let nums = new Array(n);
for (var i = 0; i < n; i++) nums[i] = n - i; // [n,n-1,...,2,1] for (let i = 0; i < n; i++) nums[i] = n - i; // [n,n-1,...,2,1]
count = bubbleSort(nums); count = bubbleSort(nums);
console.log("平方阶(冒泡排序)的计算操作数量 = " + count); console.log("平方阶(冒泡排序)的计算操作数量 = " + count);

View file

@ -3,3 +3,157 @@
* Created Time: 2023-01-02 * Created Time: 2023-01-02
* Author: RiverTwilight (contact@rene.wang) * Author: RiverTwilight (contact@rene.wang)
*/ */
/**
* File: time_complexity.js
* Created Time: 2023-01-02
* Author: RiverTwilight (contact@rene.wang)
*/
/* 常数阶 */
function constant(n: number): number {
let count = 0;
const size = 100000;
for (let i = 0; i < size; i++) count++;
return count;
}
/* 线性阶 */
function linear(n: number): number {
let count = 0;
for (let i = 0; i < n; i++) count++;
return count;
}
/* 线性阶(遍历数组) */
function arrayTraversal(nums) {
let count = 0;
// 循环次数与数组长度成正比
for (let i = 0; i < nums.length; i++) {
count++;
}
return count;
}
/* 平方阶 */
function quadratic(n: number): number {
let count = 0;
// 循环次数与数组长度成平方关系
for (let i = 0; i < n; i++) {
for (let j = 0; j < n; j++) {
count++;
}
}
return count;
}
/* 平方阶(冒泡排序) */
function bubbleSort(nums: number[]): number {
let count = 0; // 计数器
// 外循环:待排序元素数量为 n-1, n-2, ..., 1
for (let i = nums.length - 1; i > 0; i--) {
// 内循环:冒泡操作
for (let j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) {
// 交换 nums[j] 与 nums[j + 1]
let tmp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = tmp;
count += 3; // 元素交换包含 3 个单元操作
}
}
}
return count;
}
/* 指数阶(循环实现) */
function exponential(n: number): number {
let count = 0,
base = 1;
// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
for (let i = 0; i < n; i++) {
for (let j = 0; j < base; j++) {
count++;
}
base *= 2;
}
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count;
}
/* 指数阶(递归实现) */
function expRecur(n: number): number {
if (n == 1) return 1;
return expRecur(n - 1) + expRecur(n - 1) + 1;
}
/* 对数阶(循环实现) */
function logarithmic(n: number): number {
let count = 0;
while (n > 1) {
n = n / 2;
count++;
}
return count;
}
/* 对数阶(递归实现) */
function logRecur(n: number): number {
if (n <= 1) return 0;
return logRecur(n / 2) + 1;
}
/* 线性对数阶 */
function linearLogRecur(n: number): number {
if (n <= 1) return 1;
let count = linearLogRecur(n / 2) + linearLogRecur(n / 2);
for (let i = 0; i < n; i++) {
count++;
}
return count;
}
/* 阶乘阶(递归实现) */
function factorialRecur(n: number): number {
if (n == 0) return 1;
let count = 0;
// 从 1 个分裂出 n 个
for (let i = 0; i < n; i++) {
count += factorialRecur(n - 1);
}
return count;
}
var n: number = 8;
console.log("输入数据大小 n = " + n);
let count = constant(n);
console.log("常数阶的计算操作数量 = " + count);
count = linear(n);
console.log("线性阶的计算操作数量 = " + count);
count = arrayTraversal(new Array(n));
console.log("线性阶(遍历数组)的计算操作数量 = " + count);
count = quadratic(n);
console.log("平方阶的计算操作数量 = " + count);
var nums = new Array(n);
for (let i = 0; i < n; i++) nums[i] = n - i; // [n,n-1,...,2,1]
count = bubbleSort(nums);
console.log("平方阶(冒泡排序)的计算操作数量 = " + count);
count = exponential(n);
console.log("指数阶(循环实现)的计算操作数量 = " + count);
count = expRecur(n);
console.log("指数阶(递归实现)的计算操作数量 = " + count);
count = logarithmic(n);
console.log("对数阶(循环实现)的计算操作数量 = " + count);
count = logRecur(n);
console.log("对数阶(递归实现)的计算操作数量 = " + count);
count = linearLogRecur(n);
console.log("线性对数阶(递归实现)的计算操作数量 = " + count);
count = factorialRecur(n);
console.log("阶乘阶(递归实现)的计算操作数量 = " + count);