Add the section of counting sort. (#427)

This commit is contained in:
Yudong Jin 2023-03-19 23:42:12 +08:00 committed by GitHub
parent 8e78c6036b
commit ceeb138487
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
14 changed files with 290 additions and 2 deletions

View file

@ -0,0 +1,78 @@
/**
* File: bubble_sort.java
* Created Time: 2023-03-17
* Author: Krahets (krahets@163.com)
*/
package chapter_sorting;
import java.util.*;
public class counting_sort {
/* 计数排序 */
// 简单实现无法用于排序对象
static void countingSortNaive(int[] nums) {
// 1. 统计数组最大元素 m
int m = 0;
for (int num : nums) {
m = Math.max(m, num);
}
// 2. 统计各数字的出现次数
// counter[num] 代表 num 的出现次数
int[] counter = new int[m + 1];
for (int num : nums) {
counter[num]++;
}
// 3. 遍历 counter 将各元素填入原数组 nums
int i = 0;
for (int num = 0; num < m + 1; num++) {
for (int j = 0; j < counter[num]; j++, i++) {
nums[i] = num;
}
}
}
/* 计数排序 */
// 完整实现可排序对象并且是稳定排序
static void countingSort(int[] nums) {
// 1. 统计数组最大元素 m
int m = 0;
for (int num : nums) {
m = Math.max(m, num);
}
// 2. 统计各数字的出现次数
// counter[num] 代表 num 的出现次数
int[] counter = new int[m + 1];
for (int num : nums) {
counter[num]++;
}
// 3. counter 的前缀和出现次数转换为尾索引
// counter[num]-1 num res 中最后一次出现的索引
for (int i = 0; i < m; i++) {
counter[i + 1] += counter[i];
}
// 4. 倒序遍历 nums 将各元素填入结果数组 res
// 初始化数组 res 用于记录结果
int n = nums.length;
int[] res = new int[n];
for (int i = n - 1; i >= 0; i--) {
int num = nums[i];
res[counter[num] - 1] = num; // num 放置到对应索引处
counter[num]--; // 令前缀和自减 1 得到下次放置 num 的索引
}
// 使用结果数组 res 覆盖原数组 nums
for (int i = 0; i < n; i++) {
nums[i] = res[i];
}
}
public static void main(String[] args) {
int[] nums = { 1, 0, 1, 2, 0, 4, 0, 2, 2, 4 };
countingSortNaive(nums);
System.out.println("计数排序(无法排序对象)完成后 nums = " + Arrays.toString(nums));
countingSort(nums);
System.out.println("计数排序完成后 nums = " + Arrays.toString(nums));
}
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 64 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 75 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 64 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 74 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 74 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 86 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 86 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 86 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 87 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 74 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 62 KiB

View file

@ -0,0 +1,209 @@
# 计数排序
前面介绍的几种排序算法都属于 **基于比较的排序算法**,即通过比较元素之间的大小来实现排序,此类排序算法的时间复杂度无法超越 $O(n \log n)$ 。接下来,我们将学习一种 **非比较排序算法** ,名为「计数排序 Counting Sort」其时间复杂度可以达到 $O(n)$ 。
## 简单实现
先看一个简单例子。给定一个长度为 $n$ 的数组 `nums` ,元素皆为 **非负整数**。计数排序的整体流程为:
1. 统计数组的最大数字,记为 $m$ ,并建立一个长度为 $m + 1$ 的辅助数组 `counter`
2. **借助 `counter` 统计 `nums` 中各数字的出现次数**,其中 `counter[num]` 对应数字 `num` 的出现次数。统计方法很简单,只需遍历 `nums` (设当前数字为 `num`),每轮将 `counter[num]` 自增 $1$ 即可。
3. **由于 `counter` 的各个索引是天然有序的,因此相当于所有数字已经被排序好了**。接下来,我们遍历 `counter` ,根据各数字的出现次数,将各数字按从小到大的顺序填入 `nums` 即可。
=== "<1>"
![counting_sort_naive_step1](counting_sort.assets/counting_sort_naive_step1.png)
=== "<2>"
![counting_sort_naive_step2](counting_sort.assets/counting_sort_naive_step2.png)
=== "<3>"
![counting_sort_naive_step3](counting_sort.assets/counting_sort_naive_step3.png)
以下是实现代码,计数排序名副其实,确实是通过“统计数量”来实现排序的。
=== "Java"
```java title="counting_sort.java"
[class]{counting_sort}-[func]{countingSortNaive}
```
=== "C++"
```cpp title="counting_sort.cpp"
[class]{}-[func]{countingSortNaive}
```
=== "Python"
```python title="counting_sort.py"
[class]{}-[func]{counting_sort_naive}
```
=== "Go"
```go title="counting_sort.go"
[class]{}-[func]{countingSortNaive}
```
=== "JavaScript"
```javascript title="counting_sort.js"
[class]{}-[func]{countingSortNaive}
```
=== "TypeScript"
```typescript title="counting_sort.ts"
[class]{}-[func]{countingSortNaive}
```
=== "C"
```c title="counting_sort.c"
[class]{}-[func]{countingSortNaive}
```
=== "C#"
```csharp title="counting_sort.cs"
[class]{counting_sort}-[func]{countingSortNaive}
```
=== "Swift"
```swift title="counting_sort.swift"
[class]{}-[func]{countingSortNaive}
```
=== "Zig"
```zig title="counting_sort.zig"
[class]{}-[func]{countingSortNaive}
```
## 完整实现
细心的同学可能发现,**如果输入数据是对象,上述步骤 `3.` 就失效了**。例如输入数据是商品对象,我们想要按照商品价格(类的成员变量)对商品进行排序,而上述算法只能给出价格的排序结果。
那么如何才能得到原数据的排序结果呢?我们首先计算 `counter` 的「前缀和」,顾名思义,索引 `i` 处的前缀和 `prefix[i]` 等于数组前 `i` 个元素之和,即
$$
\text{prefix}[i] = \sum_{j=0}^i \text{counter[j]}
$$
**前缀和具有明确意义,`prefix[num] - 1` 代表元素 `num` 在结果数组 `res` 中最后一次出现的索引**。这个信息很关键,因为其给出了各个元素应该出现在结果数组的哪个位置。接下来,我们倒序遍历原数组 `nums` 的每个元素 `num` ,在每轮迭代中执行:
1. 将 `num` 填入数组 `res` 的索引 `prefix[num] - 1` 处;
2. 令前缀和 `prefix[num]` 自减 $1$ ,从而得到下次放置 `num` 的索引;
完成遍历后,数组 `res` 中就是排序好的结果,最后使用 `res` 覆盖原数组 `nums` 即可;
=== "<1>"
![counting_sort_step1](counting_sort.assets/counting_sort_step1.png)
=== "<2>"
![counting_sort_step2](counting_sort.assets/counting_sort_step2.png)
=== "<3>"
![counting_sort_step3](counting_sort.assets/counting_sort_step3.png)
=== "<4>"
![counting_sort_step4](counting_sort.assets/counting_sort_step4.png)
=== "<5>"
![counting_sort_step5](counting_sort.assets/counting_sort_step5.png)
=== "<6>"
![counting_sort_step6](counting_sort.assets/counting_sort_step6.png)
=== "<7>"
![counting_sort_step7](counting_sort.assets/counting_sort_step7.png)
=== "<8>"
![counting_sort_step8](counting_sort.assets/counting_sort_step8.png)
计数排序的实现代码如下所示。
=== "Java"
```java title="counting_sort.java"
[class]{counting_sort}-[func]{countingSort}
```
=== "C++"
```cpp title="counting_sort.cpp"
[class]{}-[func]{countingSort}
```
=== "Python"
```python title="counting_sort.py"
[class]{}-[func]{counting_sort}
```
=== "Go"
```go title="counting_sort.go"
[class]{}-[func]{countingSort}
```
=== "JavaScript"
```javascript title="counting_sort.js"
[class]{}-[func]{countingSort}
```
=== "TypeScript"
```typescript title="counting_sort.ts"
[class]{}-[func]{countingSort}
```
=== "C"
```c title="counting_sort.c"
[class]{}-[func]{countingSort}
```
=== "C#"
```csharp title="counting_sort.cs"
[class]{counting_sort}-[func]{countingSort}
```
=== "Swift"
```swift title="counting_sort.swift"
[class]{}-[func]{countingSort}
```
=== "Zig"
```zig title="counting_sort.zig"
[class]{}-[func]{countingSort}
```
## 算法特性
**时间复杂度 $O(n + m)$** :涉及遍历 `nums` 和遍历 `counter` ,都使用线性时间。一般情况下 $n \gg m$ ,此时使用线性 $O(n)$ 时间。
**空间复杂度 $O(n + m)$** :数组 `res``counter` 长度分别为 $n$ , $m$ 。
**非原地排序**:借助了辅助数组 `counter` 和结果数组 `res` 的额外空间。
**稳定排序**:倒序遍历 `nums` 保持了相等元素的相对位置。
**非自适应排序**:与元素分布无关。
!!! question "为什么是稳定排序?"
由于向 `res` 中填充元素的顺序是“从右向左”的,因此倒序遍历 `nums` 可以避免改变相等元素之间的相对位置,从而实现“稳定排序”;其实正序遍历 `nums` 也可以得到正确的排序结果,但结果“非稳定”。
## 局限性
看到这里,你也许会觉得计数排序太妙了,咔咔一通操作,时间复杂度就下来了。但实际上与其它算法一样,计数排序也无法摆脱“此消彼长”的宿命,**时间复杂度优化的代价是通用型变差**。
**计数排序只适用于非负整数**。若想要用在其他类型数据上,则要求该数据必须可以被转化为非负整数,并且不能改变各个元素之间的相对大小关系。例如,对于包含负数的整数数组,可以先给所有数字加上一个常数,将全部数字转化为正数,排序完成后再转换回去即可。
**计数排序只适用于数据范围不大的情况**。比如,上述示例中 $m$ 不能太大,否则占用空间太多;而当 $n \ll m$ 时,计数排序使用 $O(m)$ 时间,有可能比 $O(n \log n)$ 的排序算法还要慢。

View file

@ -169,7 +169,7 @@ nav:
- 9. &nbsp; &nbsp; 图:
- 9.1. &nbsp; 图: chapter_graph/graph.md
- 9.2. &nbsp; 图基础操作: chapter_graph/graph_operations.md
- 9.3. &nbsp; 图的遍历: chapter_graph/graph_traversal.md
- 9.3. &nbsp; 图的遍历New: chapter_graph/graph_traversal.md
- 9.4. &nbsp; 小结: chapter_graph/summary.md
- 10. &nbsp; &nbsp; 查找算法:
- 10.1. &nbsp; 线性查找: chapter_searching/linear_search.md
@ -182,7 +182,8 @@ nav:
- 11.3. &nbsp; 插入排序: chapter_sorting/insertion_sort.md
- 11.4. &nbsp; 快速排序: chapter_sorting/quick_sort.md
- 11.5. &nbsp; 归并排序: chapter_sorting/merge_sort.md
- 11.6. &nbsp; 小结: chapter_sorting/summary.md
- 11.6. &nbsp; 计数排序New: chapter_sorting/counting_sort.md
- 11.7. &nbsp; 小结: chapter_sorting/summary.md
- 12. &nbsp; &nbsp; 附录:
- 12.1. &nbsp; 编程环境安装: chapter_appendix/installation.md
- 12.2. &nbsp; 一起参与创作: chapter_appendix/contribution.md