This commit is contained in:
krahets 2023-08-21 03:56:52 +08:00
parent 47b7d6fd44
commit c0f960b443
105 changed files with 506 additions and 502 deletions

View file

@ -534,7 +534,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -549,7 +549,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1144,7 +1144,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1159,7 +1159,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

Binary file not shown.

Before

Width:  |  Height:  |  Size: 137 KiB

After

Width:  |  Height:  |  Size: 137 KiB

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1273,7 +1273,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1288,7 +1288,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1157,7 +1157,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1172,7 +1172,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1266,7 +1266,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1281,7 +1281,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -4713,10 +4713,10 @@
<p align="center"> 图:常见链表种类 </p>
<h2 id="424">4.2.4 &nbsp; 链表典型应用<a class="headerlink" href="#424" title="Permanent link">&para;</a></h2>
<p>单向链表通常用于实现栈、队列、散列表和图等数据结构。</p>
<p>单向链表通常用于实现栈、队列、哈希表和图等数据结构。</p>
<ul>
<li><strong>栈与队列</strong>:当插入和删除操作都在链表的一端进行时,它表现出先进后出的的特性,对应栈;当插入操作在链表的一端进行,删除操作在链表的另一端进行,它表现出先进先出的特性,对应队列。</li>
<li><strong>散列</strong>:链地址法是解决哈希冲突的主流方案之一,在该方案中,所有冲突的元素都会被放到一个链表中。</li>
<li><strong>哈希</strong>:链地址法是解决哈希冲突的主流方案之一,在该方案中,所有冲突的元素都会被放到一个链表中。</li>
<li><strong></strong>:邻接表是表示图的一种常用方式,在其中,图的每个顶点都与一个链表相关联,链表中的每个元素都代表与该顶点相连的其他顶点。</li>
</ul>
<p>双向链表常被用于需要快速查找前一个和下一个元素的场景。</p>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1259,7 +1259,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1274,7 +1274,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1204,7 +1204,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1219,7 +1219,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -3998,7 +3998,7 @@
</div>
</div>
</div>
<p>逐行放置 <span class="arithmatex">\(n\)</span> 次,考虑列约束,则从第一行到最后一行分别有 <span class="arithmatex">\(n, n-1, \cdots, 2, 1\)</span> 个选择,<strong>因此时间复杂度为 <span class="arithmatex">\(O(n!)\)</span></strong> 。实际上,根据对角线约束的剪枝也能够大幅地缩小搜索空间,因而搜索效率往往优于以上时间复杂度。</p>
<p>逐行放置 <span class="arithmatex">\(n\)</span> 次,考虑列约束,则从第一行到最后一行分别有 <span class="arithmatex">\(n, n-1, \dots, 2, 1\)</span> 个选择,<strong>因此时间复杂度为 <span class="arithmatex">\(O(n!)\)</span></strong> 。实际上,根据对角线约束的剪枝也能够大幅地缩小搜索空间,因而搜索效率往往优于以上时间复杂度。</p>
<p>数组 <code>state</code> 使用 <span class="arithmatex">\(O(n^2)\)</span> 空间,数组 <code>cols</code> , <code>diags1</code> , <code>diags2</code> 皆使用 <span class="arithmatex">\(O(n)\)</span> 空间。最大递归深度为 <span class="arithmatex">\(n\)</span> ,使用 <span class="arithmatex">\(O(n)\)</span> 栈帧空间。因此,<strong>空间复杂度为 <span class="arithmatex">\(O(n^2)\)</span></strong></p>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -3923,21 +3923,21 @@
<h3 id="2">2. &nbsp; 重复子集剪枝<a class="headerlink" href="#2" title="Permanent link">&para;</a></h3>
<p><strong>我们考虑在搜索过程中通过剪枝进行去重</strong>。观察下图,重复子集是在以不同顺序选择数组元素时产生的,具体来看:</p>
<ol>
<li>第一轮和第二轮分别选择 <span class="arithmatex">\(3\)</span> , <span class="arithmatex">\(4\)</span> ,会生成包含这两个元素的所有子集,记为 <span class="arithmatex">\([3, 4, \cdots]\)</span></li>
<li>若第一轮选择 <span class="arithmatex">\(4\)</span> <strong>则第二轮应该跳过 <span class="arithmatex">\(3\)</span></strong> ,因为该选择产生的子集 <span class="arithmatex">\([4, 3, \cdots]\)</span><code>1.</code> 中生成的子集完全重复。</li>
<li>第一轮和第二轮分别选择 <span class="arithmatex">\(3\)</span> , <span class="arithmatex">\(4\)</span> ,会生成包含这两个元素的所有子集,记为 <span class="arithmatex">\([3, 4, \dots]\)</span></li>
<li>若第一轮选择 <span class="arithmatex">\(4\)</span> <strong>则第二轮应该跳过 <span class="arithmatex">\(3\)</span></strong> ,因为该选择产生的子集 <span class="arithmatex">\([4, 3, \dots]\)</span><code>1.</code> 中生成的子集完全重复。</li>
</ol>
<p>分支越靠右,需要排除的分支也越多,例如:</p>
<ol>
<li>前两轮选择 <span class="arithmatex">\(3\)</span> , <span class="arithmatex">\(5\)</span> ,生成子集 <span class="arithmatex">\([3, 5, \cdots]\)</span></li>
<li>前两轮选择 <span class="arithmatex">\(4\)</span> , <span class="arithmatex">\(5\)</span> ,生成子集 <span class="arithmatex">\([4, 5, \cdots]\)</span></li>
<li>若第一轮选择 <span class="arithmatex">\(5\)</span> <strong>则第二轮应该跳过 <span class="arithmatex">\(3\)</span><span class="arithmatex">\(4\)</span></strong> ,因为子集 <span class="arithmatex">\([5, 3, \cdots]\)</span> 和子集 <span class="arithmatex">\([5, 4, \cdots]\)</span><code>1.</code> , <code>2.</code> 中生成的子集完全重复。</li>
<li>前两轮选择 <span class="arithmatex">\(3\)</span> , <span class="arithmatex">\(5\)</span> ,生成子集 <span class="arithmatex">\([3, 5, \dots]\)</span></li>
<li>前两轮选择 <span class="arithmatex">\(4\)</span> , <span class="arithmatex">\(5\)</span> ,生成子集 <span class="arithmatex">\([4, 5, \dots]\)</span></li>
<li>若第一轮选择 <span class="arithmatex">\(5\)</span> <strong>则第二轮应该跳过 <span class="arithmatex">\(3\)</span><span class="arithmatex">\(4\)</span></strong> ,因为子集 <span class="arithmatex">\([5, 3, \dots]\)</span> 和子集 <span class="arithmatex">\([5, 4, \dots]\)</span><code>1.</code> , <code>2.</code> 中生成的子集完全重复。</li>
</ol>
<p><img alt="不同选择顺序导致的重复子集" src="../subset_sum_problem.assets/subset_sum_i_pruning.png" /></p>
<p align="center"> 图:不同选择顺序导致的重复子集 </p>
<p>总结来看,给定输入数组 <span class="arithmatex">\([x_1, x_2, \cdots, x_n]\)</span> ,设搜索过程中的选择序列为 <span class="arithmatex">\([x_{i_1}, x_{i_2}, \cdots , x_{i_m}]\)</span> ,则该选择序列需要满足 <span class="arithmatex">\(i_1 \leq i_2 \leq \cdots \leq i_m\)</span> <strong>不满足该条件的选择序列都会造成重复,应当剪枝</strong></p>
<p>总结来看,给定输入数组 <span class="arithmatex">\([x_1, x_2, \dots, x_n]\)</span> ,设搜索过程中的选择序列为 <span class="arithmatex">\([x_{i_1}, x_{i_2}, \dots , x_{i_m}]\)</span> ,则该选择序列需要满足 <span class="arithmatex">\(i_1 \leq i_2 \leq \dots \leq i_m\)</span> <strong>不满足该条件的选择序列都会造成重复,应当剪枝</strong></p>
<h3 id="3">3. &nbsp; 代码实现<a class="headerlink" href="#3" title="Permanent link">&para;</a></h3>
<p>为实现该剪枝,我们初始化变量 <code>start</code> ,用于指示遍历起点。<strong>当做出选择 <span class="arithmatex">\(x_{i}\)</span> 后,设定下一轮从索引 <span class="arithmatex">\(i\)</span> 开始遍历</strong>。这样做就可以让选择序列满足 <span class="arithmatex">\(i_1 \leq i_2 \leq \cdots \leq i_m\)</span> ,从而保证子集唯一。</p>
<p>为实现该剪枝,我们初始化变量 <code>start</code> ,用于指示遍历起点。<strong>当做出选择 <span class="arithmatex">\(x_{i}\)</span> 后,设定下一轮从索引 <span class="arithmatex">\(i\)</span> 开始遍历</strong>。这样做就可以让选择序列满足 <span class="arithmatex">\(i_1 \leq i_2 \leq \dots \leq i_m\)</span> ,从而保证子集唯一。</p>
<p>除此之外,我们还对代码进行了两项优化:</p>
<ul>
<li>在开启搜索前,先将数组 <code>nums</code> 排序。在遍历所有选择时,<strong>当子集和超过 <code>target</code> 时直接结束循环</strong>,因为后边的元素更大,其子集和都一定会超过 <code>target</code></li>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -26,7 +26,7 @@
<title>第 2 章   复杂度 - Hello 算法</title>
<title>第 2 章   时空复杂度 - Hello 算法</title>
@ -117,7 +117,7 @@
<div class="md-header__topic" data-md-component="header-topic">
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
</div>
@ -547,7 +547,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -562,7 +562,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="true">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1157,7 +1157,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1172,7 +1172,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -3350,13 +3350,13 @@
<h1 id="2">第 2 章 &nbsp; 复杂度<a class="headerlink" href="#2" title="Permanent link">&para;</a></h1>
<h1 id="2">第 2 章 &nbsp; 时空复杂度<a class="headerlink" href="#2" title="Permanent link">&para;</a></h1>
<div class="center-table">
<p><img alt="复杂度" src="../assets/covers/chapter_complexity_analysis.jpg" width="600" /></p>
<p><img alt="时空复杂度" src="../assets/covers/chapter_complexity_analysis.jpg" width="600" /></p>
</div>
<div class="admonition abstract">
<p class="admonition-title">Abstract</p>
<p>复杂度犹如浩瀚的算法宇宙中的时空向导。</p>
<p>复杂度分析犹如浩瀚的算法宇宙中的时空向导。</p>
<p>它带领我们在时间与空间这两个维度上深入探索,寻找更优雅的解决方案。</p>
</div>
<h2 id="_1">本章内容<a class="headerlink" href="#_1" title="Permanent link">&para;</a></h2>

View file

@ -547,7 +547,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -562,7 +562,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="true">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1218,7 +1218,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1233,7 +1233,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -3534,7 +3534,7 @@
<nav class="md-footer__inner md-grid" aria-label="页脚" >
<a href="../" class="md-footer__link md-footer__link--prev" aria-label="上一页: 第 2 章 &amp;nbsp; 复杂度" rel="prev">
<a href="../" class="md-footer__link md-footer__link--prev" aria-label="上一页: 第 2 章 &amp;nbsp; 时空复杂度" rel="prev">
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
@ -3544,7 +3544,7 @@
上一页
</span>
<div class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</div>
</div>
</a>

View file

@ -547,7 +547,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -562,7 +562,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="true">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1266,7 +1266,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1281,7 +1281,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -3553,7 +3553,7 @@
<a id="__codelineno-0-7" name="__codelineno-0-7" href="#__codelineno-0-7"></a>
<a id="__codelineno-0-8" name="__codelineno-0-8" href="#__codelineno-0-8"></a><span class="cm">/* 函数 */</span>
<a id="__codelineno-0-9" name="__codelineno-0-9" href="#__codelineno-0-9"></a><span class="kt">int</span><span class="w"> </span><span class="nf">function</span><span class="p">()</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-0-10" name="__codelineno-0-10" href="#__codelineno-0-10"></a><span class="w"> </span><span class="c1">// do something...</span>
<a id="__codelineno-0-10" name="__codelineno-0-10" href="#__codelineno-0-10"></a><span class="w"> </span><span class="c1">// 执行某些操作...</span>
<a id="__codelineno-0-11" name="__codelineno-0-11" href="#__codelineno-0-11"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-0-12" name="__codelineno-0-12" href="#__codelineno-0-12"></a><span class="p">}</span>
<a id="__codelineno-0-13" name="__codelineno-0-13" href="#__codelineno-0-13"></a>
@ -3576,7 +3576,7 @@
<a id="__codelineno-1-7" name="__codelineno-1-7" href="#__codelineno-1-7"></a>
<a id="__codelineno-1-8" name="__codelineno-1-8" href="#__codelineno-1-8"></a><span class="cm">/* 函数 */</span>
<a id="__codelineno-1-9" name="__codelineno-1-9" href="#__codelineno-1-9"></a><span class="kt">int</span><span class="w"> </span><span class="nf">func</span><span class="p">()</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-10" name="__codelineno-1-10" href="#__codelineno-1-10"></a><span class="w"> </span><span class="c1">// do something...</span>
<a id="__codelineno-1-10" name="__codelineno-1-10" href="#__codelineno-1-10"></a><span class="w"> </span><span class="c1">// 执行某些操作...</span>
<a id="__codelineno-1-11" name="__codelineno-1-11" href="#__codelineno-1-11"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-1-12" name="__codelineno-1-12" href="#__codelineno-1-12"></a><span class="p">}</span>
<a id="__codelineno-1-13" name="__codelineno-1-13" href="#__codelineno-1-13"></a>
@ -3598,7 +3598,7 @@
<a id="__codelineno-2-6" name="__codelineno-2-6" href="#__codelineno-2-6"></a>
<a id="__codelineno-2-7" name="__codelineno-2-7" href="#__codelineno-2-7"></a><span class="k">def</span> <span class="nf">function</span><span class="p">()</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-2-8" name="__codelineno-2-8" href="#__codelineno-2-8"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;函数&quot;&quot;&quot;</span>
<a id="__codelineno-2-9" name="__codelineno-2-9" href="#__codelineno-2-9"></a> <span class="c1"># do something...</span>
<a id="__codelineno-2-9" name="__codelineno-2-9" href="#__codelineno-2-9"></a> <span class="c1"># 执行某些操作...</span>
<a id="__codelineno-2-10" name="__codelineno-2-10" href="#__codelineno-2-10"></a> <span class="k">return</span> <span class="mi">0</span>
<a id="__codelineno-2-11" name="__codelineno-2-11" href="#__codelineno-2-11"></a>
<a id="__codelineno-2-12" name="__codelineno-2-12" href="#__codelineno-2-12"></a><span class="k">def</span> <span class="nf">algorithm</span><span class="p">(</span><span class="n">n</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span> <span class="c1"># 输入数据</span>
@ -3623,7 +3623,7 @@
<a id="__codelineno-3-11" name="__codelineno-3-11" href="#__codelineno-3-11"></a>
<a id="__codelineno-3-12" name="__codelineno-3-12" href="#__codelineno-3-12"></a><span class="cm">/* 函数 */</span>
<a id="__codelineno-3-13" name="__codelineno-3-13" href="#__codelineno-3-13"></a><span class="kd">func</span><span class="w"> </span><span class="nx">function</span><span class="p">()</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-14" name="__codelineno-3-14" href="#__codelineno-3-14"></a><span class="w"> </span><span class="c1">// do something...</span>
<a id="__codelineno-3-14" name="__codelineno-3-14" href="#__codelineno-3-14"></a><span class="w"> </span><span class="c1">// 执行某些操作...</span>
<a id="__codelineno-3-15" name="__codelineno-3-15" href="#__codelineno-3-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span>
<a id="__codelineno-3-16" name="__codelineno-3-16" href="#__codelineno-3-16"></a><span class="p">}</span>
<a id="__codelineno-3-17" name="__codelineno-3-17" href="#__codelineno-3-17"></a>
@ -3649,7 +3649,7 @@
<a id="__codelineno-4-10" name="__codelineno-4-10" href="#__codelineno-4-10"></a>
<a id="__codelineno-4-11" name="__codelineno-4-11" href="#__codelineno-4-11"></a><span class="cm">/* 函数 */</span>
<a id="__codelineno-4-12" name="__codelineno-4-12" href="#__codelineno-4-12"></a><span class="kd">function</span><span class="w"> </span><span class="nx">constFunc</span><span class="p">()</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-13" name="__codelineno-4-13" href="#__codelineno-4-13"></a><span class="w"> </span><span class="c1">// do something</span>
<a id="__codelineno-4-13" name="__codelineno-4-13" href="#__codelineno-4-13"></a><span class="w"> </span><span class="c1">// 执行某些操作</span>
<a id="__codelineno-4-14" name="__codelineno-4-14" href="#__codelineno-4-14"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-4-15" name="__codelineno-4-15" href="#__codelineno-4-15"></a><span class="p">}</span>
<a id="__codelineno-4-16" name="__codelineno-4-16" href="#__codelineno-4-16"></a>
@ -3675,7 +3675,7 @@
<a id="__codelineno-5-10" name="__codelineno-5-10" href="#__codelineno-5-10"></a>
<a id="__codelineno-5-11" name="__codelineno-5-11" href="#__codelineno-5-11"></a><span class="cm">/* 函数 */</span>
<a id="__codelineno-5-12" name="__codelineno-5-12" href="#__codelineno-5-12"></a><span class="kd">function</span><span class="w"> </span><span class="nx">constFunc</span><span class="p">()</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-5-13" name="__codelineno-5-13" href="#__codelineno-5-13"></a><span class="w"> </span><span class="c1">// do something</span>
<a id="__codelineno-5-13" name="__codelineno-5-13" href="#__codelineno-5-13"></a><span class="w"> </span><span class="c1">// 执行某些操作</span>
<a id="__codelineno-5-14" name="__codelineno-5-14" href="#__codelineno-5-14"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-5-15" name="__codelineno-5-15" href="#__codelineno-5-15"></a><span class="p">}</span>
<a id="__codelineno-5-16" name="__codelineno-5-16" href="#__codelineno-5-16"></a>
@ -3691,7 +3691,7 @@
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-6-1" name="__codelineno-6-1" href="#__codelineno-6-1"></a><span class="cm">/* 函数 */</span>
<a id="__codelineno-6-2" name="__codelineno-6-2" href="#__codelineno-6-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">func</span><span class="p">()</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-6-3" name="__codelineno-6-3" href="#__codelineno-6-3"></a><span class="w"> </span><span class="c1">// do something...</span>
<a id="__codelineno-6-3" name="__codelineno-6-3" href="#__codelineno-6-3"></a><span class="w"> </span><span class="c1">// 执行某些操作...</span>
<a id="__codelineno-6-4" name="__codelineno-6-4" href="#__codelineno-6-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-6-5" name="__codelineno-6-5" href="#__codelineno-6-5"></a><span class="p">}</span>
<a id="__codelineno-6-6" name="__codelineno-6-6" href="#__codelineno-6-6"></a>
@ -3713,7 +3713,7 @@
<a id="__codelineno-7-7" name="__codelineno-7-7" href="#__codelineno-7-7"></a>
<a id="__codelineno-7-8" name="__codelineno-7-8" href="#__codelineno-7-8"></a><span class="cm">/* 函数 */</span>
<a id="__codelineno-7-9" name="__codelineno-7-9" href="#__codelineno-7-9"></a><span class="kt">int</span><span class="w"> </span><span class="nf">function</span><span class="p">()</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-10" name="__codelineno-7-10" href="#__codelineno-7-10"></a><span class="w"> </span><span class="c1">// do something...</span>
<a id="__codelineno-7-10" name="__codelineno-7-10" href="#__codelineno-7-10"></a><span class="w"> </span><span class="c1">// 执行某些操作...</span>
<a id="__codelineno-7-11" name="__codelineno-7-11" href="#__codelineno-7-11"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
<a id="__codelineno-7-12" name="__codelineno-7-12" href="#__codelineno-7-12"></a><span class="p">}</span>
<a id="__codelineno-7-13" name="__codelineno-7-13" href="#__codelineno-7-13"></a>
@ -3739,7 +3739,7 @@
<a id="__codelineno-8-10" name="__codelineno-8-10" href="#__codelineno-8-10"></a>
<a id="__codelineno-8-11" name="__codelineno-8-11" href="#__codelineno-8-11"></a><span class="cm">/* 函数 */</span>
<a id="__codelineno-8-12" name="__codelineno-8-12" href="#__codelineno-8-12"></a><span class="kd">func</span> <span class="nf">function</span><span class="p">()</span> <span class="p">-&gt;</span> <span class="nb">Int</span> <span class="p">{</span>
<a id="__codelineno-8-13" name="__codelineno-8-13" href="#__codelineno-8-13"></a> <span class="c1">// do something...</span>
<a id="__codelineno-8-13" name="__codelineno-8-13" href="#__codelineno-8-13"></a> <span class="c1">// 执行某些操作...</span>
<a id="__codelineno-8-14" name="__codelineno-8-14" href="#__codelineno-8-14"></a> <span class="k">return</span> <span class="mi">0</span>
<a id="__codelineno-8-15" name="__codelineno-8-15" href="#__codelineno-8-15"></a><span class="p">}</span>
<a id="__codelineno-8-16" name="__codelineno-8-16" href="#__codelineno-8-16"></a>
@ -3766,7 +3766,7 @@
<a id="__codelineno-10-7" name="__codelineno-10-7" href="#__codelineno-10-7"></a>
<a id="__codelineno-10-8" name="__codelineno-10-8" href="#__codelineno-10-8"></a><span class="cm">/* 函数 */</span>
<a id="__codelineno-10-9" name="__codelineno-10-9" href="#__codelineno-10-9"></a><span class="kt">int</span><span class="w"> </span><span class="n">function</span><span class="p">()</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-10" name="__codelineno-10-10" href="#__codelineno-10-10"></a><span class="w"> </span><span class="c1">// do something...</span>
<a id="__codelineno-10-10" name="__codelineno-10-10" href="#__codelineno-10-10"></a><span class="w"> </span><span class="c1">// 执行某些操作...</span>
<a id="__codelineno-10-11" name="__codelineno-10-11" href="#__codelineno-10-11"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
<a id="__codelineno-10-12" name="__codelineno-10-12" href="#__codelineno-10-12"></a><span class="p">}</span>
<a id="__codelineno-10-13" name="__codelineno-10-13" href="#__codelineno-10-13"></a>
@ -3911,7 +3911,7 @@
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-24-1" name="__codelineno-24-1" href="#__codelineno-24-1"></a><span class="kt">int</span><span class="w"> </span><span class="nf">function</span><span class="p">()</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-24-2" name="__codelineno-24-2" href="#__codelineno-24-2"></a><span class="w"> </span><span class="c1">// do something</span>
<a id="__codelineno-24-2" name="__codelineno-24-2" href="#__codelineno-24-2"></a><span class="w"> </span><span class="c1">// 执行某些操作</span>
<a id="__codelineno-24-3" name="__codelineno-24-3" href="#__codelineno-24-3"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-24-4" name="__codelineno-24-4" href="#__codelineno-24-4"></a><span class="p">}</span>
<a id="__codelineno-24-5" name="__codelineno-24-5" href="#__codelineno-24-5"></a><span class="cm">/* 循环 O(1) */</span>
@ -3929,7 +3929,7 @@
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-25-1" name="__codelineno-25-1" href="#__codelineno-25-1"></a><span class="kt">int</span><span class="w"> </span><span class="nf">func</span><span class="p">()</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-25-2" name="__codelineno-25-2" href="#__codelineno-25-2"></a><span class="w"> </span><span class="c1">// do something</span>
<a id="__codelineno-25-2" name="__codelineno-25-2" href="#__codelineno-25-2"></a><span class="w"> </span><span class="c1">// 执行某些操作</span>
<a id="__codelineno-25-3" name="__codelineno-25-3" href="#__codelineno-25-3"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-25-4" name="__codelineno-25-4" href="#__codelineno-25-4"></a><span class="p">}</span>
<a id="__codelineno-25-5" name="__codelineno-25-5" href="#__codelineno-25-5"></a><span class="cm">/* 循环 O(1) */</span>
@ -3947,7 +3947,7 @@
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-26-1" name="__codelineno-26-1" href="#__codelineno-26-1"></a><span class="k">def</span> <span class="nf">function</span><span class="p">()</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-26-2" name="__codelineno-26-2" href="#__codelineno-26-2"></a> <span class="c1"># do something</span>
<a id="__codelineno-26-2" name="__codelineno-26-2" href="#__codelineno-26-2"></a> <span class="c1"># 执行某些操作</span>
<a id="__codelineno-26-3" name="__codelineno-26-3" href="#__codelineno-26-3"></a> <span class="k">return</span> <span class="mi">0</span>
<a id="__codelineno-26-4" name="__codelineno-26-4" href="#__codelineno-26-4"></a>
<a id="__codelineno-26-5" name="__codelineno-26-5" href="#__codelineno-26-5"></a><span class="k">def</span> <span class="nf">loop</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span>
@ -3963,7 +3963,7 @@
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-27-1" name="__codelineno-27-1" href="#__codelineno-27-1"></a><span class="kd">func</span><span class="w"> </span><span class="nx">function</span><span class="p">()</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-27-2" name="__codelineno-27-2" href="#__codelineno-27-2"></a><span class="w"> </span><span class="c1">// do something</span>
<a id="__codelineno-27-2" name="__codelineno-27-2" href="#__codelineno-27-2"></a><span class="w"> </span><span class="c1">// 执行某些操作</span>
<a id="__codelineno-27-3" name="__codelineno-27-3" href="#__codelineno-27-3"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span>
<a id="__codelineno-27-4" name="__codelineno-27-4" href="#__codelineno-27-4"></a><span class="p">}</span>
<a id="__codelineno-27-5" name="__codelineno-27-5" href="#__codelineno-27-5"></a>
@ -3985,7 +3985,7 @@
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-28-1" name="__codelineno-28-1" href="#__codelineno-28-1"></a><span class="kd">function</span><span class="w"> </span><span class="nx">constFunc</span><span class="p">()</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-28-2" name="__codelineno-28-2" href="#__codelineno-28-2"></a><span class="w"> </span><span class="c1">// do something</span>
<a id="__codelineno-28-2" name="__codelineno-28-2" href="#__codelineno-28-2"></a><span class="w"> </span><span class="c1">// 执行某些操作</span>
<a id="__codelineno-28-3" name="__codelineno-28-3" href="#__codelineno-28-3"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-28-4" name="__codelineno-28-4" href="#__codelineno-28-4"></a><span class="p">}</span>
<a id="__codelineno-28-5" name="__codelineno-28-5" href="#__codelineno-28-5"></a><span class="cm">/* 循环 O(1) */</span>
@ -4003,7 +4003,7 @@
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-29-1" name="__codelineno-29-1" href="#__codelineno-29-1"></a><span class="kd">function</span><span class="w"> </span><span class="nx">constFunc</span><span class="p">()</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-29-2" name="__codelineno-29-2" href="#__codelineno-29-2"></a><span class="w"> </span><span class="c1">// do something</span>
<a id="__codelineno-29-2" name="__codelineno-29-2" href="#__codelineno-29-2"></a><span class="w"> </span><span class="c1">// 执行某些操作</span>
<a id="__codelineno-29-3" name="__codelineno-29-3" href="#__codelineno-29-3"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-29-4" name="__codelineno-29-4" href="#__codelineno-29-4"></a><span class="p">}</span>
<a id="__codelineno-29-5" name="__codelineno-29-5" href="#__codelineno-29-5"></a><span class="cm">/* 循环 O(1) */</span>
@ -4021,7 +4021,7 @@
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-30-1" name="__codelineno-30-1" href="#__codelineno-30-1"></a><span class="kt">int</span><span class="w"> </span><span class="nf">func</span><span class="p">()</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-30-2" name="__codelineno-30-2" href="#__codelineno-30-2"></a><span class="w"> </span><span class="c1">// do something</span>
<a id="__codelineno-30-2" name="__codelineno-30-2" href="#__codelineno-30-2"></a><span class="w"> </span><span class="c1">// 执行某些操作</span>
<a id="__codelineno-30-3" name="__codelineno-30-3" href="#__codelineno-30-3"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-30-4" name="__codelineno-30-4" href="#__codelineno-30-4"></a><span class="p">}</span>
<a id="__codelineno-30-5" name="__codelineno-30-5" href="#__codelineno-30-5"></a><span class="cm">/* 循环 O(1) */</span>
@ -4039,7 +4039,7 @@
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-31-1" name="__codelineno-31-1" href="#__codelineno-31-1"></a><span class="kt">int</span><span class="w"> </span><span class="nf">function</span><span class="p">()</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-31-2" name="__codelineno-31-2" href="#__codelineno-31-2"></a><span class="w"> </span><span class="c1">// do something</span>
<a id="__codelineno-31-2" name="__codelineno-31-2" href="#__codelineno-31-2"></a><span class="w"> </span><span class="c1">// 执行某些操作</span>
<a id="__codelineno-31-3" name="__codelineno-31-3" href="#__codelineno-31-3"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
<a id="__codelineno-31-4" name="__codelineno-31-4" href="#__codelineno-31-4"></a><span class="p">}</span>
<a id="__codelineno-31-5" name="__codelineno-31-5" href="#__codelineno-31-5"></a><span class="cm">/* 循环 O(1) */</span>
@ -4058,7 +4058,7 @@
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-32-1" name="__codelineno-32-1" href="#__codelineno-32-1"></a><span class="p">@</span><span class="n">discardableResult</span>
<a id="__codelineno-32-2" name="__codelineno-32-2" href="#__codelineno-32-2"></a><span class="kd">func</span> <span class="nf">function</span><span class="p">()</span> <span class="p">-&gt;</span> <span class="nb">Int</span> <span class="p">{</span>
<a id="__codelineno-32-3" name="__codelineno-32-3" href="#__codelineno-32-3"></a> <span class="c1">// do something</span>
<a id="__codelineno-32-3" name="__codelineno-32-3" href="#__codelineno-32-3"></a> <span class="c1">// 执行某些操作</span>
<a id="__codelineno-32-4" name="__codelineno-32-4" href="#__codelineno-32-4"></a> <span class="k">return</span> <span class="mi">0</span>
<a id="__codelineno-32-5" name="__codelineno-32-5" href="#__codelineno-32-5"></a><span class="p">}</span>
<a id="__codelineno-32-6" name="__codelineno-32-6" href="#__codelineno-32-6"></a>
@ -4084,7 +4084,7 @@
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-34-1" name="__codelineno-34-1" href="#__codelineno-34-1"></a><span class="kt">int</span><span class="w"> </span><span class="n">function</span><span class="p">()</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-34-2" name="__codelineno-34-2" href="#__codelineno-34-2"></a><span class="w"> </span><span class="c1">// do something</span>
<a id="__codelineno-34-2" name="__codelineno-34-2" href="#__codelineno-34-2"></a><span class="w"> </span><span class="c1">// 执行某些操作</span>
<a id="__codelineno-34-3" name="__codelineno-34-3" href="#__codelineno-34-3"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
<a id="__codelineno-34-4" name="__codelineno-34-4" href="#__codelineno-34-4"></a><span class="p">}</span>
<a id="__codelineno-34-5" name="__codelineno-34-5" href="#__codelineno-34-5"></a><span class="cm">/* 循环 O(1) */</span>
@ -4129,7 +4129,7 @@ O(1) &lt; O(\log n) &lt; O(n) &lt; O(n^2) &lt; O(2^n) \newline
<div class="tabbed-block">
<div class="highlight"><span class="filename">space_complexity.java</span><pre><span></span><code><a id="__codelineno-36-1" name="__codelineno-36-1" href="#__codelineno-36-1"></a><span class="cm">/* 函数 */</span>
<a id="__codelineno-36-2" name="__codelineno-36-2" href="#__codelineno-36-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">function</span><span class="p">()</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-36-3" name="__codelineno-36-3" href="#__codelineno-36-3"></a><span class="w"> </span><span class="c1">// do something</span>
<a id="__codelineno-36-3" name="__codelineno-36-3" href="#__codelineno-36-3"></a><span class="w"> </span><span class="c1">// 执行某些操作</span>
<a id="__codelineno-36-4" name="__codelineno-36-4" href="#__codelineno-36-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-36-5" name="__codelineno-36-5" href="#__codelineno-36-5"></a><span class="p">}</span>
<a id="__codelineno-36-6" name="__codelineno-36-6" href="#__codelineno-36-6"></a>
@ -4154,7 +4154,7 @@ O(1) &lt; O(\log n) &lt; O(n) &lt; O(n^2) &lt; O(2^n) \newline
<div class="tabbed-block">
<div class="highlight"><span class="filename">space_complexity.cpp</span><pre><span></span><code><a id="__codelineno-37-1" name="__codelineno-37-1" href="#__codelineno-37-1"></a><span class="cm">/* 函数 */</span>
<a id="__codelineno-37-2" name="__codelineno-37-2" href="#__codelineno-37-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">func</span><span class="p">()</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-37-3" name="__codelineno-37-3" href="#__codelineno-37-3"></a><span class="w"> </span><span class="c1">// do something</span>
<a id="__codelineno-37-3" name="__codelineno-37-3" href="#__codelineno-37-3"></a><span class="w"> </span><span class="c1">// 执行某些操作</span>
<a id="__codelineno-37-4" name="__codelineno-37-4" href="#__codelineno-37-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-37-5" name="__codelineno-37-5" href="#__codelineno-37-5"></a><span class="p">}</span>
<a id="__codelineno-37-6" name="__codelineno-37-6" href="#__codelineno-37-6"></a>
@ -4179,7 +4179,7 @@ O(1) &lt; O(\log n) &lt; O(n) &lt; O(n^2) &lt; O(2^n) \newline
<div class="tabbed-block">
<div class="highlight"><span class="filename">space_complexity.py</span><pre><span></span><code><a id="__codelineno-38-1" name="__codelineno-38-1" href="#__codelineno-38-1"></a><span class="k">def</span> <span class="nf">function</span><span class="p">()</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-38-2" name="__codelineno-38-2" href="#__codelineno-38-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;函数&quot;&quot;&quot;</span>
<a id="__codelineno-38-3" name="__codelineno-38-3" href="#__codelineno-38-3"></a> <span class="c1"># do something</span>
<a id="__codelineno-38-3" name="__codelineno-38-3" href="#__codelineno-38-3"></a> <span class="c1"># 执行某些操作</span>
<a id="__codelineno-38-4" name="__codelineno-38-4" href="#__codelineno-38-4"></a> <span class="k">return</span> <span class="mi">0</span>
<a id="__codelineno-38-5" name="__codelineno-38-5" href="#__codelineno-38-5"></a>
<a id="__codelineno-38-6" name="__codelineno-38-6" href="#__codelineno-38-6"></a><span class="k">def</span> <span class="nf">constant</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span>
@ -4199,7 +4199,7 @@ O(1) &lt; O(\log n) &lt; O(n) &lt; O(n^2) &lt; O(2^n) \newline
<div class="tabbed-block">
<div class="highlight"><span class="filename">space_complexity.go</span><pre><span></span><code><a id="__codelineno-39-1" name="__codelineno-39-1" href="#__codelineno-39-1"></a><span class="cm">/* 函数 */</span>
<a id="__codelineno-39-2" name="__codelineno-39-2" href="#__codelineno-39-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">function</span><span class="p">()</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-39-3" name="__codelineno-39-3" href="#__codelineno-39-3"></a><span class="w"> </span><span class="c1">// do something...</span>
<a id="__codelineno-39-3" name="__codelineno-39-3" href="#__codelineno-39-3"></a><span class="w"> </span><span class="c1">// 执行某些操作...</span>
<a id="__codelineno-39-4" name="__codelineno-39-4" href="#__codelineno-39-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span>
<a id="__codelineno-39-5" name="__codelineno-39-5" href="#__codelineno-39-5"></a><span class="p">}</span>
<a id="__codelineno-39-6" name="__codelineno-39-6" href="#__codelineno-39-6"></a>
@ -4226,7 +4226,7 @@ O(1) &lt; O(\log n) &lt; O(n) &lt; O(n^2) &lt; O(2^n) \newline
<div class="tabbed-block">
<div class="highlight"><span class="filename">space_complexity.js</span><pre><span></span><code><a id="__codelineno-40-1" name="__codelineno-40-1" href="#__codelineno-40-1"></a><span class="cm">/* 函数 */</span>
<a id="__codelineno-40-2" name="__codelineno-40-2" href="#__codelineno-40-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">constFunc</span><span class="p">()</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-40-3" name="__codelineno-40-3" href="#__codelineno-40-3"></a><span class="w"> </span><span class="c1">// do something</span>
<a id="__codelineno-40-3" name="__codelineno-40-3" href="#__codelineno-40-3"></a><span class="w"> </span><span class="c1">// 执行某些操作</span>
<a id="__codelineno-40-4" name="__codelineno-40-4" href="#__codelineno-40-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-40-5" name="__codelineno-40-5" href="#__codelineno-40-5"></a><span class="p">}</span>
<a id="__codelineno-40-6" name="__codelineno-40-6" href="#__codelineno-40-6"></a>
@ -4251,7 +4251,7 @@ O(1) &lt; O(\log n) &lt; O(n) &lt; O(n^2) &lt; O(2^n) \newline
<div class="tabbed-block">
<div class="highlight"><span class="filename">space_complexity.ts</span><pre><span></span><code><a id="__codelineno-41-1" name="__codelineno-41-1" href="#__codelineno-41-1"></a><span class="cm">/* 函数 */</span>
<a id="__codelineno-41-2" name="__codelineno-41-2" href="#__codelineno-41-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">constFunc</span><span class="p">()</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-41-3" name="__codelineno-41-3" href="#__codelineno-41-3"></a><span class="w"> </span><span class="c1">// do something</span>
<a id="__codelineno-41-3" name="__codelineno-41-3" href="#__codelineno-41-3"></a><span class="w"> </span><span class="c1">// 执行某些操作</span>
<a id="__codelineno-41-4" name="__codelineno-41-4" href="#__codelineno-41-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-41-5" name="__codelineno-41-5" href="#__codelineno-41-5"></a><span class="p">}</span>
<a id="__codelineno-41-6" name="__codelineno-41-6" href="#__codelineno-41-6"></a>
@ -4276,7 +4276,7 @@ O(1) &lt; O(\log n) &lt; O(n) &lt; O(n^2) &lt; O(2^n) \newline
<div class="tabbed-block">
<div class="highlight"><span class="filename">space_complexity.c</span><pre><span></span><code><a id="__codelineno-42-1" name="__codelineno-42-1" href="#__codelineno-42-1"></a><span class="cm">/* 函数 */</span>
<a id="__codelineno-42-2" name="__codelineno-42-2" href="#__codelineno-42-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">func</span><span class="p">()</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-42-3" name="__codelineno-42-3" href="#__codelineno-42-3"></a><span class="w"> </span><span class="c1">// do something</span>
<a id="__codelineno-42-3" name="__codelineno-42-3" href="#__codelineno-42-3"></a><span class="w"> </span><span class="c1">// 执行某些操作</span>
<a id="__codelineno-42-4" name="__codelineno-42-4" href="#__codelineno-42-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-42-5" name="__codelineno-42-5" href="#__codelineno-42-5"></a><span class="p">}</span>
<a id="__codelineno-42-6" name="__codelineno-42-6" href="#__codelineno-42-6"></a>
@ -4302,7 +4302,7 @@ O(1) &lt; O(\log n) &lt; O(n) &lt; O(n^2) &lt; O(2^n) \newline
<div class="tabbed-block">
<div class="highlight"><span class="filename">space_complexity.cs</span><pre><span></span><code><a id="__codelineno-43-1" name="__codelineno-43-1" href="#__codelineno-43-1"></a><span class="cm">/* 函数 */</span>
<a id="__codelineno-43-2" name="__codelineno-43-2" href="#__codelineno-43-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">function</span><span class="p">()</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-43-3" name="__codelineno-43-3" href="#__codelineno-43-3"></a><span class="w"> </span><span class="c1">// do something</span>
<a id="__codelineno-43-3" name="__codelineno-43-3" href="#__codelineno-43-3"></a><span class="w"> </span><span class="c1">// 执行某些操作</span>
<a id="__codelineno-43-4" name="__codelineno-43-4" href="#__codelineno-43-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
<a id="__codelineno-43-5" name="__codelineno-43-5" href="#__codelineno-43-5"></a><span class="p">}</span>
<a id="__codelineno-43-6" name="__codelineno-43-6" href="#__codelineno-43-6"></a>
@ -4328,7 +4328,7 @@ O(1) &lt; O(\log n) &lt; O(n) &lt; O(n^2) &lt; O(2^n) \newline
<div class="highlight"><span class="filename">space_complexity.swift</span><pre><span></span><code><a id="__codelineno-44-1" name="__codelineno-44-1" href="#__codelineno-44-1"></a><span class="cm">/* 函数 */</span>
<a id="__codelineno-44-2" name="__codelineno-44-2" href="#__codelineno-44-2"></a><span class="p">@</span><span class="n">discardableResult</span>
<a id="__codelineno-44-3" name="__codelineno-44-3" href="#__codelineno-44-3"></a><span class="kd">func</span> <span class="nf">function</span><span class="p">()</span> <span class="p">-&gt;</span> <span class="nb">Int</span> <span class="p">{</span>
<a id="__codelineno-44-4" name="__codelineno-44-4" href="#__codelineno-44-4"></a> <span class="c1">// do something</span>
<a id="__codelineno-44-4" name="__codelineno-44-4" href="#__codelineno-44-4"></a> <span class="c1">// 执行某些操作</span>
<a id="__codelineno-44-5" name="__codelineno-44-5" href="#__codelineno-44-5"></a> <span class="k">return</span> <span class="mi">0</span>
<a id="__codelineno-44-6" name="__codelineno-44-6" href="#__codelineno-44-6"></a><span class="p">}</span>
<a id="__codelineno-44-7" name="__codelineno-44-7" href="#__codelineno-44-7"></a>
@ -4381,7 +4381,7 @@ O(1) &lt; O(\log n) &lt; O(n) &lt; O(n^2) &lt; O(2^n) \newline
<div class="tabbed-block">
<div class="highlight"><span class="filename">space_complexity.dart</span><pre><span></span><code><a id="__codelineno-46-1" name="__codelineno-46-1" href="#__codelineno-46-1"></a><span class="cm">/* 函数 */</span>
<a id="__codelineno-46-2" name="__codelineno-46-2" href="#__codelineno-46-2"></a><span class="kt">int</span><span class="w"> </span><span class="n">function</span><span class="p">()</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-46-3" name="__codelineno-46-3" href="#__codelineno-46-3"></a><span class="w"> </span><span class="c1">// do something</span>
<a id="__codelineno-46-3" name="__codelineno-46-3" href="#__codelineno-46-3"></a><span class="w"> </span><span class="c1">// 执行某些操作</span>
<a id="__codelineno-46-4" name="__codelineno-46-4" href="#__codelineno-46-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
<a id="__codelineno-46-5" name="__codelineno-46-5" href="#__codelineno-46-5"></a><span class="p">}</span>
<a id="__codelineno-46-6" name="__codelineno-46-6" href="#__codelineno-46-6"></a>
@ -4406,7 +4406,7 @@ O(1) &lt; O(\log n) &lt; O(n) &lt; O(n^2) &lt; O(2^n) \newline
<div class="tabbed-block">
<div class="highlight"><span class="filename">space_complexity.rs</span><pre><span></span><code><a id="__codelineno-47-1" name="__codelineno-47-1" href="#__codelineno-47-1"></a><span class="cm">/* 函数 */</span>
<a id="__codelineno-47-2" name="__codelineno-47-2" href="#__codelineno-47-2"></a><span class="k">fn</span> <span class="nf">function</span><span class="p">()</span><span class="w"> </span>-&gt;<span class="kt">i32</span> <span class="p">{</span>
<a id="__codelineno-47-3" name="__codelineno-47-3" href="#__codelineno-47-3"></a><span class="w"> </span><span class="c1">// do something</span>
<a id="__codelineno-47-3" name="__codelineno-47-3" href="#__codelineno-47-3"></a><span class="w"> </span><span class="c1">// 执行某些操作</span>
<a id="__codelineno-47-4" name="__codelineno-47-4" href="#__codelineno-47-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-47-5" name="__codelineno-47-5" href="#__codelineno-47-5"></a><span class="p">}</span>
<a id="__codelineno-47-6" name="__codelineno-47-6" href="#__codelineno-47-6"></a>
@ -4675,7 +4675,7 @@ O(1) &lt; O(\log n) &lt; O(n) &lt; O(n^2) &lt; O(2^n) \newline
</div>
</div>
</div>
<p>以下递归函数会同时存在 <span class="arithmatex">\(n\)</span> 个未返回的 <code>algorithm()</code> 函数,使用 <span class="arithmatex">\(O(n)\)</span> 大小的栈帧空间:</p>
<p>以下函数的递归深度为 <span class="arithmatex">\(n\)</span> ,即同时存在 <span class="arithmatex">\(n\)</span> 个未返回的 <code>linear_recur()</code> 函数,使用 <span class="arithmatex">\(O(n)\)</span> 大小的栈帧空间:</p>
<div class="tabbed-set tabbed-alternate" data-tabs="6:12"><input checked="checked" id="__tabbed_6_1" name="__tabbed_6" type="radio" /><input id="__tabbed_6_2" name="__tabbed_6" type="radio" /><input id="__tabbed_6_3" name="__tabbed_6" type="radio" /><input id="__tabbed_6_4" name="__tabbed_6" type="radio" /><input id="__tabbed_6_5" name="__tabbed_6" type="radio" /><input id="__tabbed_6_6" name="__tabbed_6" type="radio" /><input id="__tabbed_6_7" name="__tabbed_6" type="radio" /><input id="__tabbed_6_8" name="__tabbed_6" type="radio" /><input id="__tabbed_6_9" name="__tabbed_6" type="radio" /><input id="__tabbed_6_10" name="__tabbed_6" type="radio" /><input id="__tabbed_6_11" name="__tabbed_6" type="radio" /><input id="__tabbed_6_12" name="__tabbed_6" type="radio" /><div class="tabbed-labels"><label for="__tabbed_6_1">Java</label><label for="__tabbed_6_2">C++</label><label for="__tabbed_6_3">Python</label><label for="__tabbed_6_4">Go</label><label for="__tabbed_6_5">JS</label><label for="__tabbed_6_6">TS</label><label for="__tabbed_6_7">C</label><label for="__tabbed_6_8">C#</label><label for="__tabbed_6_9">Swift</label><label for="__tabbed_6_10">Zig</label><label for="__tabbed_6_11">Dart</label><label for="__tabbed_6_12">Rust</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
@ -4992,7 +4992,7 @@ O(1) &lt; O(\log n) &lt; O(n) &lt; O(n^2) &lt; O(2^n) \newline
</div>
</div>
</div>
<p>在以下递归函数中,同时存在 <span class="arithmatex">\(n\)</span> 个未返回的 <code>algorithm()</code> ,并且每个函数中都初始化了一个数组,长度分别为 <span class="arithmatex">\(n, n-1, n-2, ..., 2, 1\)</span> ,平均长度为 <span class="arithmatex">\(\frac{n}{2}\)</span> ,因此总体占用 <span class="arithmatex">\(O(n^2)\)</span> 空间。</p>
<p>以下函数的递归深度为 <span class="arithmatex">\(n\)</span> ,在每个递归函数中都初始化了一个数组,长度分别为 <span class="arithmatex">\(n, n-1, n-2, ..., 2, 1\)</span> ,平均长度为 <span class="arithmatex">\(n / 2\)</span> ,因此总体占用 <span class="arithmatex">\(O(n^2)\)</span> 空间。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="8:12"><input checked="checked" id="__tabbed_8_1" name="__tabbed_8" type="radio" /><input id="__tabbed_8_2" name="__tabbed_8" type="radio" /><input id="__tabbed_8_3" name="__tabbed_8" type="radio" /><input id="__tabbed_8_4" name="__tabbed_8" type="radio" /><input id="__tabbed_8_5" name="__tabbed_8" type="radio" /><input id="__tabbed_8_6" name="__tabbed_8" type="radio" /><input id="__tabbed_8_7" name="__tabbed_8" type="radio" /><input id="__tabbed_8_8" name="__tabbed_8" type="radio" /><input id="__tabbed_8_9" name="__tabbed_8" type="radio" /><input id="__tabbed_8_10" name="__tabbed_8" type="radio" /><input id="__tabbed_8_11" name="__tabbed_8" type="radio" /><input id="__tabbed_8_12" name="__tabbed_8" type="radio" /><div class="tabbed-labels"><label for="__tabbed_8_1">Java</label><label for="__tabbed_8_2">C++</label><label for="__tabbed_8_3">Python</label><label for="__tabbed_8_4">Go</label><label for="__tabbed_8_5">JS</label><label for="__tabbed_8_6">TS</label><label for="__tabbed_8_7">C</label><label for="__tabbed_8_8">C#</label><label for="__tabbed_8_9">Swift</label><label for="__tabbed_8_10">Zig</label><label for="__tabbed_8_11">Dart</label><label for="__tabbed_8_12">Rust</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
@ -5283,9 +5283,8 @@ O(1) &lt; O(\log n) &lt; O(n) &lt; O(n^2) &lt; O(2^n) \newline
<p align="center"> 图:满二叉树产生的指数阶空间复杂度 </p>
<h3 id="5-olog-n">5. &nbsp; 对数阶 <span class="arithmatex">\(O(\log n)\)</span><a class="headerlink" href="#5-olog-n" title="Permanent link">&para;</a></h3>
<p>对数阶常见于分治算法和数据类型转换等。</p>
<p>例如归并排序算法,输入长度为 <span class="arithmatex">\(n\)</span> 的数组,每轮递归将数组从中点划分为两半,形成高度为 <span class="arithmatex">\(\log n\)</span> 的递归树,使用 <span class="arithmatex">\(O(\log n)\)</span> 栈帧空间。</p>
<p>再例如将数字转化为字符串,输入任意正整数 <span class="arithmatex">\(n\)</span> ,它的位数为 <span class="arithmatex">\(\log_{10} n + 1\)</span> ,即对应字符串长度为 <span class="arithmatex">\(\log_{10} n + 1\)</span> ,因此空间复杂度为 <span class="arithmatex">\(O(\log_{10} n + 1) = O(\log n)\)</span></p>
<p>对数阶常见于分治算法。例如归并排序,输入长度为 <span class="arithmatex">\(n\)</span> 的数组,每轮递归将数组从中点划分为两半,形成高度为 <span class="arithmatex">\(\log n\)</span> 的递归树,使用 <span class="arithmatex">\(O(\log n)\)</span> 栈帧空间。</p>
<p>再例如将数字转化为字符串,输入一个正整数 <span class="arithmatex">\(n\)</span> ,它的位数为 <span class="arithmatex">\(\log_{10} n + 1\)</span> ,即对应字符串长度为 <span class="arithmatex">\(\log_{10} n + 1\)</span> ,因此空间复杂度为 <span class="arithmatex">\(O(\log_{10} n + 1) = O(\log n)\)</span></p>
<h2 id="234">2.3.4 &nbsp; 权衡时间与空间<a class="headerlink" href="#234" title="Permanent link">&para;</a></h2>
<p>理想情况下,我们希望算法的时间复杂度和空间复杂度都能达到最优。然而在实际情况中,同时优化时间复杂度和空间复杂度通常是非常困难的。</p>
<p><strong>降低时间复杂度通常需要以提升空间复杂度为代价,反之亦然</strong>。我们将牺牲内存空间来提升算法运行速度的思路称为“以空间换时间”;反之,则称为“以时间换空间”。</p>

View file

@ -547,7 +547,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -562,7 +562,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="true">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1204,7 +1204,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1219,7 +1219,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -547,7 +547,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -562,7 +562,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="true">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1307,7 +1307,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1322,7 +1322,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -5021,10 +5021,7 @@ O(1) &lt; O(\log n) &lt; O(n) &lt; O(n \log n) &lt; O(n^2) &lt; O(2^n) &lt; O(n!
<p><img alt="常数阶、线性阶和平方阶的时间复杂度" src="../time_complexity.assets/time_complexity_constant_linear_quadratic.png" /></p>
<p align="center"> 图:常数阶、线性阶和平方阶的时间复杂度 </p>
<p>以冒泡排序为例,外层循环执行 <span class="arithmatex">\(n - 1\)</span> 次,内层循环执行 <span class="arithmatex">\(n-1, n-2, \cdots, 2, 1\)</span> 次,平均为 <span class="arithmatex">\(\frac{n}{2}\)</span> 次,因此时间复杂度为 <span class="arithmatex">\(O(n^2)\)</span> </p>
<div class="arithmatex">\[
O((n - 1) \frac{n}{2}) = O(n^2)
\]</div>
<p>以冒泡排序为例,外层循环执行 <span class="arithmatex">\(n - 1\)</span> 次,内层循环执行 <span class="arithmatex">\(n-1, n-2, \dots, 2, 1\)</span> 次,平均为 <span class="arithmatex">\(n / 2\)</span> 次,因此时间复杂度为 <span class="arithmatex">\(O((n - 1) n / 2) = O(n^2)\)</span></p>
<div class="tabbed-set tabbed-alternate" data-tabs="9:12"><input checked="checked" id="__tabbed_9_1" name="__tabbed_9" type="radio" /><input id="__tabbed_9_2" name="__tabbed_9" type="radio" /><input id="__tabbed_9_3" name="__tabbed_9" type="radio" /><input id="__tabbed_9_4" name="__tabbed_9" type="radio" /><input id="__tabbed_9_5" name="__tabbed_9" type="radio" /><input id="__tabbed_9_6" name="__tabbed_9" type="radio" /><input id="__tabbed_9_7" name="__tabbed_9" type="radio" /><input id="__tabbed_9_8" name="__tabbed_9" type="radio" /><input id="__tabbed_9_9" name="__tabbed_9" type="radio" /><input id="__tabbed_9_10" name="__tabbed_9" type="radio" /><input id="__tabbed_9_11" name="__tabbed_9" type="radio" /><input id="__tabbed_9_12" name="__tabbed_9" type="radio" /><div class="tabbed-labels"><label for="__tabbed_9_1">Java</label><label for="__tabbed_9_2">C++</label><label for="__tabbed_9_3">Python</label><label for="__tabbed_9_4">Go</label><label for="__tabbed_9_5">JS</label><label for="__tabbed_9_6">TS</label><label for="__tabbed_9_7">C</label><label for="__tabbed_9_8">C#</label><label for="__tabbed_9_9">Swift</label><label for="__tabbed_9_10">Zig</label><label for="__tabbed_9_11">Dart</label><label for="__tabbed_9_12">Rust</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
@ -5860,7 +5857,15 @@ O((n - 1) \frac{n}{2}) = O(n^2)
</div>
</div>
</div>
<p>对数阶常出现于基于分治策略的算法中,体现了“一分为多”和“化繁为简”的算法思想。它增长缓慢,是理想的时间复杂度,仅次于常数阶。</p>
<p>对数阶常出现于基于分治策略的算法中,体现了“一分为多”和“化繁为简”的算法思想。它增长缓慢,是仅次于常数阶的理想的时间复杂度。</p>
<div class="admonition tip">
<p class="admonition-title">Tip</p>
<p>准确来说,“一分为 <span class="arithmatex">\(m\)</span>”对应的时间复杂度是 <span class="arithmatex">\(O(\log_m n)\)</span> 。而通过对数换底公式,我们可以得到具有不同底数的、相等的时间复杂度:</p>
<div class="arithmatex">\[
O(\log_m n) = O(\log_k n / \log_k m) = O(\log_k n)
\]</div>
<p>因此我们通常会省略底数 <span class="arithmatex">\(m\)</span> ,将对数阶直接记为 <span class="arithmatex">\(O(\log n)\)</span></p>
</div>
<h3 id="6-on-log-n">6. &nbsp; 线性对数阶 <span class="arithmatex">\(O(n \log n)\)</span><a class="headerlink" href="#6-on-log-n" title="Permanent link">&para;</a></h3>
<p>线性对数阶常出现于嵌套循环中,两层循环的时间复杂度分别为 <span class="arithmatex">\(O(\log n)\)</span><span class="arithmatex">\(O(n)\)</span> 。相关代码如下:</p>
<div class="tabbed-set tabbed-alternate" data-tabs="14:12"><input checked="checked" id="__tabbed_14_1" name="__tabbed_14" type="radio" /><input id="__tabbed_14_2" name="__tabbed_14" type="radio" /><input id="__tabbed_14_3" name="__tabbed_14" type="radio" /><input id="__tabbed_14_4" name="__tabbed_14" type="radio" /><input id="__tabbed_14_5" name="__tabbed_14" type="radio" /><input id="__tabbed_14_6" name="__tabbed_14" type="radio" /><input id="__tabbed_14_7" name="__tabbed_14" type="radio" /><input id="__tabbed_14_8" name="__tabbed_14" type="radio" /><input id="__tabbed_14_9" name="__tabbed_14" type="radio" /><input id="__tabbed_14_10" name="__tabbed_14" type="radio" /><input id="__tabbed_14_11" name="__tabbed_14" type="radio" /><input id="__tabbed_14_12" name="__tabbed_14" type="radio" /><div class="tabbed-labels"><label for="__tabbed_14_1">Java</label><label for="__tabbed_14_2">C++</label><label for="__tabbed_14_3">Python</label><label for="__tabbed_14_4">Go</label><label for="__tabbed_14_5">JS</label><label for="__tabbed_14_6">TS</label><label for="__tabbed_14_7">C</label><label for="__tabbed_14_8">C#</label><label for="__tabbed_14_9">Swift</label><label for="__tabbed_14_10">Zig</label><label for="__tabbed_14_11">Dart</label><label for="__tabbed_14_12">Rust</label></div>
@ -6032,7 +6037,7 @@ O((n - 1) \frac{n}{2}) = O(n^2)
<h3 id="7-on">7. &nbsp; 阶乘阶 <span class="arithmatex">\(O(n!)\)</span><a class="headerlink" href="#7-on" title="Permanent link">&para;</a></h3>
<p>阶乘阶对应数学上的“全排列”问题。给定 <span class="arithmatex">\(n\)</span> 个互不重复的元素,求其所有可能的排列方案,方案数量为:</p>
<div class="arithmatex">\[
n! = n \times (n - 1) \times (n - 2) \times \cdots \times 2 \times 1
n! = n \times (n - 1) \times (n - 2) \times \dots \times 2 \times 1
\]</div>
<p>阶乘通常使用递归实现。例如在以下代码中,第一层分裂出 <span class="arithmatex">\(n\)</span> 个,第二层分裂出 <span class="arithmatex">\(n - 1\)</span> 个,以此类推,直至第 <span class="arithmatex">\(n\)</span> 层时停止分裂:</p>
<div class="tabbed-set tabbed-alternate" data-tabs="15:12"><input checked="checked" id="__tabbed_15_1" name="__tabbed_15" type="radio" /><input id="__tabbed_15_2" name="__tabbed_15" type="radio" /><input id="__tabbed_15_3" name="__tabbed_15" type="radio" /><input id="__tabbed_15_4" name="__tabbed_15" type="radio" /><input id="__tabbed_15_5" name="__tabbed_15" type="radio" /><input id="__tabbed_15_6" name="__tabbed_15" type="radio" /><input id="__tabbed_15_7" name="__tabbed_15" type="radio" /><input id="__tabbed_15_8" name="__tabbed_15" type="radio" /><input id="__tabbed_15_9" name="__tabbed_15" type="radio" /><input id="__tabbed_15_10" name="__tabbed_15" type="radio" /><input id="__tabbed_15_11" name="__tabbed_15" type="radio" /><input id="__tabbed_15_12" name="__tabbed_15" type="radio" /><div class="tabbed-labels"><label for="__tabbed_15_1">Java</label><label for="__tabbed_15_2">C++</label><label for="__tabbed_15_3">Python</label><label for="__tabbed_15_4">Go</label><label for="__tabbed_15_5">JS</label><label for="__tabbed_15_6">TS</label><label for="__tabbed_15_7">C</label><label for="__tabbed_15_8">C#</label><label for="__tabbed_15_9">Swift</label><label for="__tabbed_15_10">Zig</label><label for="__tabbed_15_11">Dart</label><label for="__tabbed_15_12">Rust</label></div>
@ -6206,7 +6211,7 @@ n! = n \times (n - 1) \times (n - 2) \times \cdots \times 2 \times 1
<p><img alt="阶乘阶的时间复杂度" src="../time_complexity.assets/time_complexity_factorial.png" /></p>
<p align="center"> 图:阶乘阶的时间复杂度 </p>
<p>请注意,因为 <span class="arithmatex">\(n! &gt; 2^n\)</span> ,所以阶乘阶比指数阶增长得更快,在 <span class="arithmatex">\(n\)</span> 较大时也是不可接受的。</p>
<p>请注意,因为<span class="arithmatex">\(n \geq 4\)</span> 时恒有 <span class="arithmatex">\(n! &gt; 2^n\)</span> ,所以阶乘阶比指数阶增长得更快,在 <span class="arithmatex">\(n\)</span> 较大时也是不可接受的。</p>
<h2 id="225">2.2.5 &nbsp; 最差、最佳、平均时间复杂度<a class="headerlink" href="#225" title="Permanent link">&para;</a></h2>
<p><strong>算法的时间效率往往不是固定的,而是与输入数据的分布有关</strong>。假设输入一个长度为 <span class="arithmatex">\(n\)</span> 的数组 <code>nums</code> ,其中 <code>nums</code> 由从 <span class="arithmatex">\(1\)</span><span class="arithmatex">\(n\)</span> 的数字组成,每个数字只出现一次,但元素顺序是随机打乱的,任务目标是返回元素 <span class="arithmatex">\(1\)</span> 的索引。我们可以得出以下结论。</p>
<ul>
@ -6546,7 +6551,7 @@ n! = n \times (n - 1) \times (n - 2) \times \cdots \times 2 \times 1
</div>
<p>值得说明的是,我们在实际中很少使用最佳时间复杂度,因为通常只有在很小概率下才能达到,可能会带来一定的误导性。<strong>而最差时间复杂度更为实用,因为它给出了一个效率安全值</strong>,让我们可以放心地使用算法。</p>
<p>从上述示例可以看出,最差或最佳时间复杂度只出现于“特殊的数据分布”,这些情况的出现概率可能很小,并不能真实地反映算法运行效率。相比之下,<strong>平均时间复杂度可以体现算法在随机输入数据下的运行效率</strong>,用 <span class="arithmatex">\(\Theta\)</span> 记号来表示。</p>
<p>对于部分算法,我们可以简单地推算出随机数据分布下的平均情况。比如上述示例,由于输入数组是被打乱的,因此元素 <span class="arithmatex">\(1\)</span> 出现在任意索引的概率都是相等的,那么算法的平均循环次数就是数组长度的一半 <span class="arithmatex">\(\frac{n}{2}\)</span> ,平均时间复杂度为 <span class="arithmatex">\(\Theta(\frac{n}{2}) = \Theta(n)\)</span></p>
<p>对于部分算法,我们可以简单地推算出随机数据分布下的平均情况。比如上述示例,由于输入数组是被打乱的,因此元素 <span class="arithmatex">\(1\)</span> 出现在任意索引的概率都是相等的,那么算法的平均循环次数就是数组长度的一半 <span class="arithmatex">\(n / 2\)</span> ,平均时间复杂度为 <span class="arithmatex">\(\Theta(n / 2) = \Theta(n)\)</span></p>
<p>但对于较为复杂的算法,计算平均时间复杂度往往是比较困难的,因为很难分析出在数据分布下的整体数学期望。在这种情况下,我们通常使用最差时间复杂度作为算法效率的评判标准。</p>
<div class="admonition question">
<p class="admonition-title">为什么很少看到 <span class="arithmatex">\(\Theta\)</span> 符号?</p>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1167,7 +1167,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1182,7 +1182,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1232,7 +1232,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1247,7 +1247,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1211,7 +1211,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1226,7 +1226,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1157,7 +1157,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1172,7 +1172,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1211,7 +1211,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1226,7 +1226,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1204,7 +1204,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1219,7 +1219,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -3413,7 +3413,7 @@
<h2 id="351-q-a">3.5.1 &nbsp; Q &amp; A<a class="headerlink" href="#351-q-a" title="Permanent link">&para;</a></h2>
<div class="admonition question">
<p class="admonition-title">为什么哈希表同时包含线性数据结构和非线性数据结构?</p>
<p>哈希表底层是数组,而为了解决哈希冲突,我们可能会使用“链式地址”(后续散列表章节会讲)。在拉链法中,数组中每个地址(桶)指向一个链表;当这个链表长度超过一定阈值时,又可能被转化为树(通常为红黑树)。因此,哈希表可能同时包含线性(数组、链表)和非线性(树)数据结构。</p>
<p>哈希表底层是数组,而为了解决哈希冲突,我们可能会使用“链式地址”(后续哈希表章节会讲)。在拉链法中,数组中每个地址(桶)指向一个链表;当这个链表长度超过一定阈值时,又可能被转化为树(通常为红黑树)。因此,哈希表可能同时包含线性(数组、链表)和非线性(树)数据结构。</p>
</div>
<div class="admonition question">
<p class="admonition-title"><code>char</code> 类型的长度是 1 byte 吗?</p>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -3504,7 +3504,7 @@
<p>分治不仅可以有效地解决算法问题,<strong>往往还可以带来算法效率的提升</strong>。在排序算法中,快速排序、归并排序、堆排序相较于选择、冒泡、插入排序更快,就是因为它们应用了分治策略。</p>
<p>那么,我们不禁发问:<strong>为什么分治可以提升算法效率,其底层逻辑是什么</strong>?换句话说,将大问题分解为多个子问题、解决子问题、将子问题的解合并为原问题的解,这几步的效率为什么比直接解决原问题的效率更高?这个问题可以从操作数量和并行计算两方面来讨论。</p>
<h3 id="1">1. &nbsp; 操作数量优化<a class="headerlink" href="#1" title="Permanent link">&para;</a></h3>
<p>以“冒泡排序”为例,其处理一个长度为 <span class="arithmatex">\(n\)</span> 的数组需要 <span class="arithmatex">\(O(n^2)\)</span> 时间。假设我们把数组从中点分为两个子数组,则划分需要 <span class="arithmatex">\(O(n)\)</span> 时间,排序每个子数组需要 <span class="arithmatex">\(O((\frac{n}{2})^2)\)</span> 时间,合并两个子数组需要 <span class="arithmatex">\(O(n)\)</span> 时间,总体时间复杂度为:</p>
<p>以“冒泡排序”为例,其处理一个长度为 <span class="arithmatex">\(n\)</span> 的数组需要 <span class="arithmatex">\(O(n^2)\)</span> 时间。假设我们把数组从中点分为两个子数组,则划分需要 <span class="arithmatex">\(O(n)\)</span> 时间,排序每个子数组需要 <span class="arithmatex">\(O((n / 2)^2)\)</span> 时间,合并两个子数组需要 <span class="arithmatex">\(O(n)\)</span> 时间,总体时间复杂度为:</p>
<div class="arithmatex">\[
O(n + (\frac{n}{2})^2 \times 2 + n) = O(\frac{n^2}{2} + 2n)
\]</div>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -3782,7 +3782,7 @@
<p>回溯算法通常并不显式地对问题进行拆解,而是将问题看作一系列决策步骤,通过试探和剪枝,搜索所有可能的解。</p>
<p>我们可以尝试从问题分解的角度分析这道题。设爬到第 <span class="arithmatex">\(i\)</span> 阶共有 <span class="arithmatex">\(dp[i]\)</span> 种方案,那么 <span class="arithmatex">\(dp[i]\)</span> 就是原问题,其子问题包括:</p>
<div class="arithmatex">\[
dp[i-1] , dp[i-2] , \cdots , dp[2] , dp[1]
dp[i-1] , dp[i-2] , \dots , dp[2] , dp[1]
\]</div>
<p>由于每轮只能上 <span class="arithmatex">\(1\)</span> 阶或 <span class="arithmatex">\(2\)</span> 阶,因此当我们站在第 <span class="arithmatex">\(i\)</span> 阶楼梯上时,上一轮只可能站在第 <span class="arithmatex">\(i - 1\)</span> 阶或第 <span class="arithmatex">\(i - 2\)</span> 阶上。换句话说,我们只能从第 <span class="arithmatex">\(i -1\)</span> 阶或第 <span class="arithmatex">\(i - 2\)</span> 阶前往第 <span class="arithmatex">\(i\)</span> 阶。</p>
<p>由此便可得出一个重要推论:<strong>爬到第 <span class="arithmatex">\(i - 1\)</span> 阶的方案数加上爬到第 <span class="arithmatex">\(i - 2\)</span> 阶的方案数就等于爬到第 <span class="arithmatex">\(i\)</span> 阶的方案数</strong>。公式如下:</p>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -3696,7 +3696,7 @@ cap[i, j] = \min(ht[i], ht[j]) \times (j - i)
<p>之所以贪心比穷举更快,是因为每轮的贪心选择都会“跳过”一些状态。</p>
<p>比如在状态 <span class="arithmatex">\(cap[i, j]\)</span> 下,<span class="arithmatex">\(i\)</span> 为短板、<span class="arithmatex">\(j\)</span> 为长板。若贪心地将短板 <span class="arithmatex">\(i\)</span> 向内移动一格,会导致以下状态被“跳过”。<strong>这意味着之后无法验证这些状态的容量大小</strong></p>
<div class="arithmatex">\[
cap[i, i+1], cap[i, i+2], \cdots, cap[i, j-2], cap[i, j-1]
cap[i, i+1], cap[i, i+2], \dots, cap[i, j-2], cap[i, j-1]
\]</div>
<p><img alt="移动短板导致被跳过的状态" src="../max_capacity_problem.assets/max_capacity_skipped_states.png" /></p>
<p align="center"> 图:移动短板导致被跳过的状态 </p>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1157,7 +1157,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1172,7 +1172,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="true">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -3903,16 +3903,16 @@
<div class="arithmatex">\[
\begin{aligned}
\text{modulus} &amp; = 9 \newline
\text{key} &amp; = \{ 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, \cdots \} \newline
\text{hash} &amp; = \{ 0, 3, 6, 0, 3, 6, 0, 3, 6, 0, 3, 6,\cdots \}
\text{key} &amp; = \{ 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, \dots \} \newline
\text{hash} &amp; = \{ 0, 3, 6, 0, 3, 6, 0, 3, 6, 0, 3, 6,\dots \}
\end{aligned}
\]</div>
<p>如果输入 <code>key</code> 恰好满足这种等差数列的数据分布,那么哈希值就会出现聚堆,从而加重哈希冲突。现在,假设将 <code>modulus</code> 替换为质数 <span class="arithmatex">\(13\)</span> ,由于 <code>key</code><code>modulus</code> 之间不存在公约数,输出的哈希值的均匀性会明显提升。</p>
<div class="arithmatex">\[
\begin{aligned}
\text{modulus} &amp; = 13 \newline
\text{key} &amp; = \{ 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, \cdots \} \newline
\text{hash} &amp; = \{ 0, 3, 6, 9, 12, 2, 5, 8, 11, 1, 4, 7, \cdots \}
\text{key} &amp; = \{ 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, \dots \} \newline
\text{hash} &amp; = \{ 0, 3, 6, 9, 12, 2, 5, 8, 11, 1, 4, 7, \dots \}
\end{aligned}
\]</div>
<p>值得说明的是,如果能够保证 <code>key</code> 是随机均匀分布的,那么选择质数或者合数作为模数都是可以的,它们都能输出均匀分布的哈希值。而当 <code>key</code> 的分布存在某种周期性时,对合数取模更容易出现聚集现象。</p>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1157,7 +1157,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1172,7 +1172,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="true">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -5853,7 +5853,7 @@
</div>
</div>
<h3 id="2">2. &nbsp; 多次哈希<a class="headerlink" href="#2" title="Permanent link">&para;</a></h3>
<p>顾名思义,多次哈希方法是使用多个哈希函数 <span class="arithmatex">\(f_1(x)\)</span> , <span class="arithmatex">\(f_2(x)\)</span> , <span class="arithmatex">\(f_3(x)\)</span> , <span class="arithmatex">\(\cdots\)</span> 进行探测。</p>
<p>顾名思义,多次哈希方法是使用多个哈希函数 <span class="arithmatex">\(f_1(x)\)</span> , <span class="arithmatex">\(f_2(x)\)</span> , <span class="arithmatex">\(f_3(x)\)</span> , <span class="arithmatex">\(\dots\)</span> 进行探测。</p>
<ul>
<li><strong>插入元素</strong>:若哈希函数 <span class="arithmatex">\(f_1(x)\)</span> 出现冲突,则尝试 <span class="arithmatex">\(f_2(x)\)</span> ,以此类推,直到找到空位后插入元素。</li>
<li><strong>查找元素</strong>:在相同的哈希函数顺序下进行查找,直到找到目标元素时返回;或遇到空位或已尝试所有哈希函数,说明哈希表中不存在该元素,则返回 <span class="arithmatex">\(\text{None}\)</span></li>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1157,7 +1157,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1172,7 +1172,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="true">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -4950,7 +4950,7 @@
<nav class="md-footer__inner md-grid" aria-label="页脚" >
<a href="../" class="md-footer__link md-footer__link--prev" aria-label="上一页: 第 6 章 &amp;nbsp; 散列表" rel="prev">
<a href="../" class="md-footer__link md-footer__link--prev" aria-label="上一页: 第 6 章 &amp;nbsp; 哈希表" rel="prev">
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
@ -4960,7 +4960,7 @@
上一页
</span>
<div class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</div>
</div>
</a>

View file

@ -26,7 +26,7 @@
<title>第 6 章   散列表 - Hello 算法</title>
<title>第 6 章   哈希表 - Hello 算法</title>
@ -117,7 +117,7 @@
<div class="md-header__topic" data-md-component="header-topic">
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
</div>
@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1157,7 +1157,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1172,7 +1172,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="true">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -3350,13 +3350,13 @@
<h1 id="6">第 6 章 &nbsp; 散列<a class="headerlink" href="#6" title="Permanent link">&para;</a></h1>
<h1 id="6">第 6 章 &nbsp; 哈希<a class="headerlink" href="#6" title="Permanent link">&para;</a></h1>
<div class="center-table">
<p><img alt="散列表" src="../assets/covers/chapter_hashing.jpg" width="600" /></p>
<p><img alt="哈希表" src="../assets/covers/chapter_hashing.jpg" width="600" /></p>
</div>
<div class="admonition abstract">
<p class="admonition-title">Abstract</p>
<p>在计算机世界中,散列表如同一位智能的图书管理员。</p>
<p>在计算机世界中,哈希表如同一位智能的图书管理员。</p>
<p>他知道如何计算索书号,从而可以快速找到目标书籍。</p>
</div>
<h2 id="_1">本章内容<a class="headerlink" href="#_1" title="Permanent link">&para;</a></h2>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1157,7 +1157,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1172,7 +1172,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="true">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -3601,18 +3601,18 @@
<p>因此,我们可以将各层的“节点数量 <span class="arithmatex">\(\times\)</span> 节点高度”求和,<strong>从而得到所有节点的堆化迭代次数的总和</strong></p>
<div class="arithmatex">\[
T(h) = 2^0h + 2^1(h-1) + 2^2(h-2) + \cdots + 2^{(h-1)}\times1
T(h) = 2^0h + 2^1(h-1) + 2^2(h-2) + \dots + 2^{(h-1)}\times1
\]</div>
<p>化简上式需要借助中学的数列知识,先对 <span class="arithmatex">\(T(h)\)</span> 乘以 <span class="arithmatex">\(2\)</span> ,得到</p>
<div class="arithmatex">\[
\begin{aligned}
T(h) &amp; = 2^0h + 2^1(h-1) + 2^2(h-2) + \cdots + 2^{h-1}\times1 \newline
2 T(h) &amp; = 2^1h + 2^2(h-1) + 2^3(h-2) + \cdots + 2^{h}\times1 \newline
T(h) &amp; = 2^0h + 2^1(h-1) + 2^2(h-2) + \dots + 2^{h-1}\times1 \newline
2 T(h) &amp; = 2^1h + 2^2(h-1) + 2^3(h-2) + \dots + 2^{h}\times1 \newline
\end{aligned}
\]</div>
<p>使用错位相减法,用下式 <span class="arithmatex">\(2 T(h)\)</span> 减去上式 <span class="arithmatex">\(T(h)\)</span> ,可得</p>
<div class="arithmatex">\[
2T(h) - T(h) = T(h) = -2^0h + 2^1 + 2^2 + \cdots + 2^{h-1} + 2^h
2T(h) - T(h) = T(h) = -2^0h + 2^1 + 2^2 + \dots + 2^{h-1} + 2^h
\]</div>
<p>观察上式,发现 <span class="arithmatex">\(T(h)\)</span> 是一个等比数列,可直接使用求和公式,得到时间复杂度为</p>
<div class="arithmatex">\[

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -3432,7 +3432,7 @@
</div>
<p>对于该问题,我们先介绍两种思路比较直接的解法,再介绍效率更高的堆解法。</p>
<h2 id="831">8.3.1 &nbsp; 方法一:遍历选择<a class="headerlink" href="#831" title="Permanent link">&para;</a></h2>
<p>我们可以进行 <span class="arithmatex">\(k\)</span> 轮遍历,分别在每轮中提取第 <span class="arithmatex">\(1\)</span> , <span class="arithmatex">\(2\)</span> , <span class="arithmatex">\(\cdots\)</span> , <span class="arithmatex">\(k\)</span> 大的元素,时间复杂度为 <span class="arithmatex">\(O(nk)\)</span></p>
<p>我们可以进行 <span class="arithmatex">\(k\)</span> 轮遍历,分别在每轮中提取第 <span class="arithmatex">\(1\)</span> , <span class="arithmatex">\(2\)</span> , <span class="arithmatex">\(\dots\)</span> , <span class="arithmatex">\(k\)</span> 大的元素,时间复杂度为 <span class="arithmatex">\(O(nk)\)</span></p>
<p>该方法只适用于 <span class="arithmatex">\(k \ll n\)</span> 的情况,因为当 <span class="arithmatex">\(k\)</span><span class="arithmatex">\(n\)</span> 比较接近时,其时间复杂度趋向于 <span class="arithmatex">\(O(n^2)\)</span> ,非常耗时。</p>
<p><img alt="遍历寻找最大的 k 个元素" src="../top_k.assets/top_k_traversal.png" /></p>
<p align="center"> 图:遍历寻找最大的 k 个元素 </p>

View file

@ -557,7 +557,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -572,7 +572,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1167,7 +1167,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1182,7 +1182,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -547,7 +547,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -562,7 +562,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1157,7 +1157,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1172,7 +1172,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -557,7 +557,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -572,7 +572,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1167,7 +1167,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1182,7 +1182,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -3450,13 +3450,13 @@
<a href="../../chapter_computational_complexity/" class="md-footer__link md-footer__link--next" aria-label="下一页: 第 2 章 &amp;nbsp; 复杂度" rel="next">
<a href="../../chapter_computational_complexity/" class="md-footer__link md-footer__link--next" aria-label="下一页: 第 2 章 &amp;nbsp; 时空复杂度" rel="next">
<div class="md-footer__title">
<span class="md-footer__direction">
下一页
</span>
<div class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</div>
</div>
<div class="md-footer__button md-icon">

View file

@ -608,7 +608,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -623,7 +623,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1218,7 +1218,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1233,7 +1233,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -3449,7 +3449,7 @@
<p>数据结构与算法高度相关、紧密结合,具体表现在以下几个方面。</p>
<ul>
<li>数据结构是算法的基石。数据结构为算法提供了结构化存储的数据,以及用于操作数据的方法。</li>
<li>算法是数据结构发挥作用的舞台。数据结构本身仅存储数据信息,通过结合算法才能解决特定问题。</li>
<li>算法是数据结构发挥作用的舞台。数据结构本身仅存储数据信息,结合算法才能解决特定问题。</li>
<li>特定算法通常会有对应最优的数据结构。算法通常可以基于不同的数据结构进行实现,但最终执行效率可能相差很大。</li>
</ul>
<p><img alt="数据结构与算法的关系" src="../what_is_dsa.assets/relationship_between_data_structure_and_algorithm.png" /></p>

View file

@ -608,7 +608,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -623,7 +623,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1218,7 +1218,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1233,7 +1233,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -3444,7 +3444,7 @@
<p>本书主要内容包括:</p>
<ul>
<li><strong>复杂度分析</strong>:数据结构和算法的评价维度与方法。时间复杂度、空间复杂度的推算方法、常见类型、示例等。</li>
<li><strong>数据结构</strong>:基本数据类型,数据结构的分类方法。数组、链表、栈、队列、散列表、树、堆、图等数据结构的定义、优缺点、常用操作、常见类型、典型应用、实现方法等。</li>
<li><strong>数据结构</strong>:基本数据类型,数据结构的分类方法。数组、链表、栈、队列、哈希表、树、堆、图等数据结构的定义、优缺点、常用操作、常见类型、典型应用、实现方法等。</li>
<li><strong>算法</strong>:搜索、排序、分治、回溯、动态规划、贪心等算法的定义、优缺点、效率、应用场景、解题步骤、示例题目等。</li>
</ul>
<p><img alt="Hello 算法内容结构" src="../about_the_book.assets/hello_algo_mindmap.png" /></p>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -622,7 +622,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -637,7 +637,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1232,7 +1232,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1247,7 +1247,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -557,7 +557,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -572,7 +572,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1167,7 +1167,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1182,7 +1182,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -543,7 +543,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -558,7 +558,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1153,7 +1153,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1168,7 +1168,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -3940,7 +3940,7 @@
</div>
<h2 id="1133">11.3.3 &nbsp; 算法特性<a class="headerlink" href="#1133" title="Permanent link">&para;</a></h2>
<ul>
<li><strong>时间复杂度为 <span class="arithmatex">\(O(n^2)\)</span> 、自适应排序</strong> :各轮“冒泡”遍历的数组长度依次为 <span class="arithmatex">\(n - 1\)</span> , <span class="arithmatex">\(n - 2\)</span> , <span class="arithmatex">\(\cdots\)</span> , <span class="arithmatex">\(2\)</span> , <span class="arithmatex">\(1\)</span> ,总和为 <span class="arithmatex">\(\frac{(n - 1) n}{2}\)</span> 。在引入 <code>flag</code> 优化后,最佳时间复杂度可达到 <span class="arithmatex">\(O(n)\)</span></li>
<li><strong>时间复杂度为 <span class="arithmatex">\(O(n^2)\)</span> 、自适应排序</strong> :各轮“冒泡”遍历的数组长度依次为 <span class="arithmatex">\(n - 1\)</span> , <span class="arithmatex">\(n - 2\)</span> , <span class="arithmatex">\(\dots\)</span> , <span class="arithmatex">\(2\)</span> , <span class="arithmatex">\(1\)</span> ,总和为 <span class="arithmatex">\((n - 1) n / 2\)</span> 。在引入 <code>flag</code> 优化后,最佳时间复杂度可达到 <span class="arithmatex">\(O(n)\)</span></li>
<li><strong>空间复杂度为 <span class="arithmatex">\(O(1)\)</span> 、原地排序</strong>:指针 <span class="arithmatex">\(i\)</span> , <span class="arithmatex">\(j\)</span> 使用常数大小的额外空间。</li>
<li><strong>稳定排序</strong>:由于在“冒泡”中遇到相等元素不交换。</li>
</ul>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -3646,7 +3646,7 @@
</div>
<h2 id="1142">11.4.2 &nbsp; 算法特性<a class="headerlink" href="#1142" title="Permanent link">&para;</a></h2>
<ul>
<li><strong>时间复杂度 <span class="arithmatex">\(O(n^2)\)</span> 、自适应排序</strong> :最差情况下,每次插入操作分别需要循环 <span class="arithmatex">\(n - 1\)</span> , <span class="arithmatex">\(n-2\)</span> , <span class="arithmatex">\(\cdots\)</span> , <span class="arithmatex">\(2\)</span> , <span class="arithmatex">\(1\)</span> 次,求和得到 <span class="arithmatex">\(\frac{(n - 1) n}{2}\)</span> ,因此时间复杂度为 <span class="arithmatex">\(O(n^2)\)</span> 。在遇到有序数据时,插入操作会提前终止。当输入数组完全有序时,插入排序达到最佳时间复杂度 <span class="arithmatex">\(O(n)\)</span></li>
<li><strong>时间复杂度 <span class="arithmatex">\(O(n^2)\)</span> 、自适应排序</strong> :最差情况下,每次插入操作分别需要循环 <span class="arithmatex">\(n - 1\)</span> , <span class="arithmatex">\(n-2\)</span> , <span class="arithmatex">\(\dots\)</span> , <span class="arithmatex">\(2\)</span> , <span class="arithmatex">\(1\)</span> 次,求和得到 <span class="arithmatex">\((n - 1) n / 2\)</span> ,因此时间复杂度为 <span class="arithmatex">\(O(n^2)\)</span> 。在遇到有序数据时,插入操作会提前终止。当输入数组完全有序时,插入排序达到最佳时间复杂度 <span class="arithmatex">\(O(n)\)</span></li>
<li><strong>空间复杂度 <span class="arithmatex">\(O(1)\)</span> 、原地排序</strong> :指针 <span class="arithmatex">\(i\)</span> , <span class="arithmatex">\(j\)</span> 使用常数大小的额外空间。</li>
<li><strong>稳定排序</strong>:在插入操作过程中,我们会将元素插入到相等元素的右侧,不会改变它们的顺序。</li>
</ul>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -4440,7 +4440,7 @@
</div>
<h2 id="1155">11.5.5 &nbsp; 尾递归优化<a class="headerlink" href="#1155" title="Permanent link">&para;</a></h2>
<p><strong>在某些输入下,快速排序可能占用空间较多</strong>。以完全倒序的输入数组为例,由于每轮哨兵划分后右子数组长度为 <span class="arithmatex">\(0\)</span> ,递归树的高度会达到 <span class="arithmatex">\(n - 1\)</span> ,此时需要占用 <span class="arithmatex">\(O(n)\)</span> 大小的栈帧空间。</p>
<p>为了防止栈帧空间的累积,我们可以在每轮哨兵排序完成后,比较两个子数组的长度,<strong>仅对较短的子数组进行递归</strong>。由于较短子数组的长度不会超过 <span class="arithmatex">\(\frac{n}{2}\)</span> ,因此这种方法能确保递归深度不超过 <span class="arithmatex">\(\log n\)</span> ,从而将最差空间复杂度优化至 <span class="arithmatex">\(O(\log n)\)</span></p>
<p>为了防止栈帧空间的累积,我们可以在每轮哨兵排序完成后,比较两个子数组的长度,<strong>仅对较短的子数组进行递归</strong>。由于较短子数组的长度不会超过 <span class="arithmatex">\(n / 2\)</span> ,因此这种方法能确保递归深度不超过 <span class="arithmatex">\(\log n\)</span> ,从而将最差空间复杂度优化至 <span class="arithmatex">\(O(\log n)\)</span></p>
<div class="tabbed-set tabbed-alternate" data-tabs="5:12"><input checked="checked" id="__tabbed_5_1" name="__tabbed_5" type="radio" /><input id="__tabbed_5_2" name="__tabbed_5" type="radio" /><input id="__tabbed_5_3" name="__tabbed_5" type="radio" /><input id="__tabbed_5_4" name="__tabbed_5" type="radio" /><input id="__tabbed_5_5" name="__tabbed_5" type="radio" /><input id="__tabbed_5_6" name="__tabbed_5" type="radio" /><input id="__tabbed_5_7" name="__tabbed_5" type="radio" /><input id="__tabbed_5_8" name="__tabbed_5" type="radio" /><input id="__tabbed_5_9" name="__tabbed_5" type="radio" /><input id="__tabbed_5_10" name="__tabbed_5" type="radio" /><input id="__tabbed_5_11" name="__tabbed_5" type="radio" /><input id="__tabbed_5_12" name="__tabbed_5" type="radio" /><div class="tabbed-labels"><label for="__tabbed_5_1">Java</label><label for="__tabbed_5_2">C++</label><label for="__tabbed_5_3">Python</label><label for="__tabbed_5_4">Go</label><label for="__tabbed_5_5">JS</label><label for="__tabbed_5_6">TS</label><label for="__tabbed_5_7">C</label><label for="__tabbed_5_8">C#</label><label for="__tabbed_5_9">Swift</label><label for="__tabbed_5_10">Zig</label><label for="__tabbed_5_11">Dart</label><label for="__tabbed_5_12">Rust</label></div>
<div class="tabbed-content">
<div class="tabbed-block">

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -3662,7 +3662,7 @@
</div>
<h2 id="1121">11.2.1 &nbsp; 算法特性<a class="headerlink" href="#1121" title="Permanent link">&para;</a></h2>
<ul>
<li><strong>时间复杂度为 <span class="arithmatex">\(O(n^2)\)</span> 、非自适应排序</strong>:外循环共 <span class="arithmatex">\(n - 1\)</span> 轮,第一轮的未排序区间长度为 <span class="arithmatex">\(n\)</span> ,最后一轮的未排序区间长度为 <span class="arithmatex">\(2\)</span> ,即各轮外循环分别包含 <span class="arithmatex">\(n\)</span> , <span class="arithmatex">\(n - 1\)</span> , <span class="arithmatex">\(\cdots\)</span> , <span class="arithmatex">\(2\)</span> 轮内循环,求和为 <span class="arithmatex">\(\frac{(n - 1)(n + 2)}{2}\)</span></li>
<li><strong>时间复杂度为 <span class="arithmatex">\(O(n^2)\)</span> 、非自适应排序</strong>:外循环共 <span class="arithmatex">\(n - 1\)</span> 轮,第一轮的未排序区间长度为 <span class="arithmatex">\(n\)</span> ,最后一轮的未排序区间长度为 <span class="arithmatex">\(2\)</span> ,即各轮外循环分别包含 <span class="arithmatex">\(n\)</span> , <span class="arithmatex">\(n - 1\)</span> , <span class="arithmatex">\(\dots\)</span> , <span class="arithmatex">\(2\)</span> 轮内循环,求和为 <span class="arithmatex">\(\frac{(n - 1)(n + 2)}{2}\)</span></li>
<li><strong>空间复杂度 <span class="arithmatex">\(O(1)\)</span> 、原地排序</strong>:指针 <span class="arithmatex">\(i\)</span> , <span class="arithmatex">\(j\)</span> 使用常数大小的额外空间。</li>
<li><strong>非稳定排序</strong>:在交换元素时,有可能将 <code>nums[i]</code> 交换至其相等元素的右边,导致两者的相对顺序发生改变。</li>
</ul>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1238,7 +1238,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1253,7 +1253,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1157,7 +1157,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1172,7 +1172,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1238,7 +1238,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1253,7 +1253,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1272,7 +1272,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1287,7 +1287,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1204,7 +1204,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1219,7 +1219,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -3513,13 +3513,13 @@
<a href="../../chapter_hashing/" class="md-footer__link md-footer__link--next" aria-label="下一页: 第 6 章 &amp;nbsp; 散列表" rel="next">
<a href="../../chapter_hashing/" class="md-footer__link md-footer__link--next" aria-label="下一页: 第 6 章 &amp;nbsp; 哈希表" rel="next">
<div class="md-footer__title">
<span class="md-footer__direction">
下一页
</span>
<div class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</div>
</div>
<div class="md-footer__button md-icon">

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>

View file

@ -545,7 +545,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</span>
@ -560,7 +560,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
第 2 章 &nbsp; 时空复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1155,7 +1155,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</span>
@ -1170,7 +1170,7 @@
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列
第 6 章 &nbsp; 哈希
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -3704,7 +3704,7 @@
</div>
</div>
<p><strong>时间复杂度</strong>:所有节点被访问一次,使用 <span class="arithmatex">\(O(n)\)</span> 时间,其中 <span class="arithmatex">\(n\)</span> 为节点数量。</p>
<p><strong>空间复杂度</strong>:在最差情况下,即满二叉树时,遍历到最底层之前,队列中最多同时存在 <span class="arithmatex">\(\frac{n + 1}{2}\)</span> 个节点,占用 <span class="arithmatex">\(O(n)\)</span> 空间。</p>
<p><strong>空间复杂度</strong>:在最差情况下,即满二叉树时,遍历到最底层之前,队列中最多同时存在 <span class="arithmatex">\((n + 1) / 2\)</span> 个节点,占用 <span class="arithmatex">\(O(n)\)</span> 空间。</p>
<h2 id="722">7.2.2 &nbsp; 前序、中序、后序遍历<a class="headerlink" href="#722" title="Permanent link">&para;</a></h2>
<p>相应地,前序、中序和后序遍历都属于「深度优先遍历 depth-first traversal」它体现了一种“先走到尽头再回溯继续”的遍历方式。</p>
<p>如下图所示,左侧是深度优先遍历的示意图,右上方是对应的递归代码。深度优先遍历就像是绕着整个二叉树的外围“走”一圈,在这个过程中,在每个节点都会遇到三个位置,分别对应前序遍历、中序遍历和后序遍历。</p>

Some files were not shown because too many files have changed in this diff Show more