mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-26 14:26:29 +08:00
build
This commit is contained in:
parent
7351ec70a6
commit
a73b3f1714
4 changed files with 437 additions and 21 deletions
|
@ -144,17 +144,62 @@ status: new
|
|||
=== "JS"
|
||||
|
||||
```javascript title="climbing_stairs_backtrack.js"
|
||||
[class]{}-[func]{backtrack}
|
||||
/* 回溯 */
|
||||
function backtrack(choices, state, n, res) {
|
||||
// 当爬到第 n 阶时,方案数量加 1
|
||||
if (state === n) res.set(0, res.get(0) + 1);
|
||||
// 遍历所有选择
|
||||
for (choice of choices) {
|
||||
// 剪枝:不允许越过第 n 阶
|
||||
if (state + choice > n) break;
|
||||
// 尝试:做出选择,更新状态
|
||||
backtrack(choices, state + choice, n, res);
|
||||
// 回退
|
||||
}
|
||||
}
|
||||
|
||||
[class]{}-[func]{climbingStairsBacktrack}
|
||||
/* 爬楼梯:回溯 */
|
||||
function climbingStairsBacktrack(n) {
|
||||
const choices = [1, 2]; // 可选择向上爬 1 或 2 阶
|
||||
const state = 0; // 从第 0 阶开始爬
|
||||
const res = new Map();
|
||||
res.set(0, 0); // 使用 res[0] 记录方案数量
|
||||
backtrack(choices, state, n, res);
|
||||
return res.get(0);
|
||||
}
|
||||
```
|
||||
|
||||
=== "TS"
|
||||
|
||||
```typescript title="climbing_stairs_backtrack.ts"
|
||||
[class]{}-[func]{backtrack}
|
||||
/* 回溯 */
|
||||
function backtrack(
|
||||
choices: number[],
|
||||
state: number,
|
||||
n: number,
|
||||
res: Map<0, any>
|
||||
): void {
|
||||
// 当爬到第 n 阶时,方案数量加 1
|
||||
if (state === n) res.set(0, res.get(0) + 1);
|
||||
// 遍历所有选择
|
||||
for (let choice of choices) {
|
||||
// 剪枝:不允许越过第 n 阶
|
||||
if (state + choice > n) break;
|
||||
// 尝试:做出选择,更新状态
|
||||
backtrack(choices, state + choice, n, res);
|
||||
// 回退
|
||||
}
|
||||
}
|
||||
|
||||
[class]{}-[func]{climbingStairsBacktrack}
|
||||
/* 爬楼梯:回溯 */
|
||||
function climbingStairsBacktrack(n: number): number {
|
||||
const choices = [1, 2]; // 可选择向上爬 1 或 2 阶
|
||||
const state = 0; // 从第 0 阶开始爬
|
||||
const res = new Map();
|
||||
res.set(0, 0); // 使用 res[0] 记录方案数量
|
||||
backtrack(choices, state, n, res);
|
||||
return res.get(0);
|
||||
}
|
||||
```
|
||||
|
||||
=== "C"
|
||||
|
@ -402,17 +447,37 @@ $$
|
|||
=== "JS"
|
||||
|
||||
```javascript title="climbing_stairs_dfs.js"
|
||||
[class]{}-[func]{dfs}
|
||||
/* 搜索 */
|
||||
function dfs(i) {
|
||||
// 已知 dp[1] 和 dp[2] ,返回之
|
||||
if (i == 1 || i == 2) return i;
|
||||
// dp[i] = dp[i-1] + dp[i-2]
|
||||
const count = dfs(i - 1) + dfs(i - 2);
|
||||
return count;
|
||||
}
|
||||
|
||||
[class]{}-[func]{climbingStairsDFS}
|
||||
/* 爬楼梯:搜索 */
|
||||
function climbingStairsDFS(n) {
|
||||
return dfs(n);
|
||||
}
|
||||
```
|
||||
|
||||
=== "TS"
|
||||
|
||||
```typescript title="climbing_stairs_dfs.ts"
|
||||
[class]{}-[func]{dfs}
|
||||
/* 搜索 */
|
||||
function dfs(i: number): number {
|
||||
// 已知 dp[1] 和 dp[2] ,返回之
|
||||
if (i == 1 || i == 2) return i;
|
||||
// dp[i] = dp[i-1] + dp[i-2]
|
||||
const count = dfs(i - 1) + dfs(i - 2);
|
||||
return count;
|
||||
}
|
||||
|
||||
[class]{}-[func]{climbingStairsDFS}
|
||||
/* 爬楼梯:搜索 */
|
||||
function climbingStairsDFS(n: number): number {
|
||||
return dfs(n);
|
||||
}
|
||||
```
|
||||
|
||||
=== "C"
|
||||
|
@ -636,17 +701,49 @@ $$
|
|||
=== "JS"
|
||||
|
||||
```javascript title="climbing_stairs_dfs_mem.js"
|
||||
[class]{}-[func]{dfs}
|
||||
/* 记忆化搜索 */
|
||||
function dfs(i, mem) {
|
||||
// 已知 dp[1] 和 dp[2] ,返回之
|
||||
if (i == 1 || i == 2) return i;
|
||||
// 若存在记录 dp[i] ,则直接返回之
|
||||
if (mem[i] != -1) return mem[i];
|
||||
// dp[i] = dp[i-1] + dp[i-2]
|
||||
const count = dfs(i - 1, mem) + dfs(i - 2, mem);
|
||||
// 记录 dp[i]
|
||||
mem[i] = count;
|
||||
return count;
|
||||
}
|
||||
|
||||
[class]{}-[func]{climbingStairsDFSMem}
|
||||
/* 爬楼梯:记忆化搜索 */
|
||||
function climbingStairsDFSMem(n) {
|
||||
// mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
|
||||
const mem = new Array(n + 1).fill(-1);
|
||||
return dfs(n, mem);
|
||||
}
|
||||
```
|
||||
|
||||
=== "TS"
|
||||
|
||||
```typescript title="climbing_stairs_dfs_mem.ts"
|
||||
[class]{}-[func]{dfs}
|
||||
/* 记忆化搜索 */
|
||||
function dfs(i: number, mem: number[]): number {
|
||||
// 已知 dp[1] 和 dp[2] ,返回之
|
||||
if (i == 1 || i == 2) return i;
|
||||
// 若存在记录 dp[i] ,则直接返回之
|
||||
if (mem[i] != -1) return mem[i];
|
||||
// dp[i] = dp[i-1] + dp[i-2]
|
||||
const count = dfs(i - 1, mem) + dfs(i - 2, mem);
|
||||
// 记录 dp[i]
|
||||
mem[i] = count;
|
||||
return count;
|
||||
}
|
||||
|
||||
[class]{}-[func]{climbingStairsDFSMem}
|
||||
/* 爬楼梯:记忆化搜索 */
|
||||
function climbingStairsDFSMem(n: number): number {
|
||||
// mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
|
||||
const mem = new Array(n + 1).fill(-1);
|
||||
return dfs(n, mem);
|
||||
}
|
||||
```
|
||||
|
||||
=== "C"
|
||||
|
@ -867,13 +964,39 @@ $$
|
|||
=== "JS"
|
||||
|
||||
```javascript title="climbing_stairs_dp.js"
|
||||
[class]{}-[func]{climbingStairsDP}
|
||||
/* 爬楼梯:动态规划 */
|
||||
function climbingStairsDP(n) {
|
||||
if (n == 1 || n == 2) return n;
|
||||
// 初始化 dp 表,用于存储子问题的解
|
||||
const dp = new Array(n + 1).fill(-1);
|
||||
// 初始状态:预设最小子问题的解
|
||||
dp[1] = 1;
|
||||
dp[2] = 2;
|
||||
// 状态转移:从较小子问题逐步求解较大子问题
|
||||
for (let i = 3; i <= n; i++) {
|
||||
dp[i] = dp[i - 1] + dp[i - 2];
|
||||
}
|
||||
return dp[n];
|
||||
}
|
||||
```
|
||||
|
||||
=== "TS"
|
||||
|
||||
```typescript title="climbing_stairs_dp.ts"
|
||||
[class]{}-[func]{climbingStairsDP}
|
||||
/* 爬楼梯:动态规划 */
|
||||
function climbingStairsDP(n: number): number {
|
||||
if (n == 1 || n == 2) return n;
|
||||
// 初始化 dp 表,用于存储子问题的解
|
||||
const dp = new Array(n + 1).fill(-1);
|
||||
// 初始状态:预设最小子问题的解
|
||||
dp[1] = 1;
|
||||
dp[2] = 2;
|
||||
// 状态转移:从较小子问题逐步求解较大子问题
|
||||
for (let i = 3; i <= n; i++) {
|
||||
dp[i] = dp[i - 1] + dp[i - 2];
|
||||
}
|
||||
return dp[n];
|
||||
}
|
||||
```
|
||||
|
||||
=== "C"
|
||||
|
@ -1054,13 +1177,35 @@ $$
|
|||
=== "JS"
|
||||
|
||||
```javascript title="climbing_stairs_dp.js"
|
||||
[class]{}-[func]{climbingStairsDPComp}
|
||||
/* 爬楼梯:状态压缩后的动态规划 */
|
||||
function climbingStairsDPComp(n) {
|
||||
if (n == 1 || n == 2) return n;
|
||||
let a = 1,
|
||||
b = 2;
|
||||
for (let i = 3; i <= n; i++) {
|
||||
const tmp = b;
|
||||
b = a + b;
|
||||
a = tmp;
|
||||
}
|
||||
return b;
|
||||
}
|
||||
```
|
||||
|
||||
=== "TS"
|
||||
|
||||
```typescript title="climbing_stairs_dp.ts"
|
||||
[class]{}-[func]{climbingStairsDPComp}
|
||||
/* 爬楼梯:状态压缩后的动态规划 */
|
||||
function climbingStairsDPComp(n: number): number {
|
||||
if (n == 1 || n == 2) return n;
|
||||
let a = 1,
|
||||
b = 2;
|
||||
for (let i = 3; i <= n; i++) {
|
||||
const tmp = b;
|
||||
b = a + b;
|
||||
a = tmp;
|
||||
}
|
||||
return b;
|
||||
}
|
||||
```
|
||||
|
||||
=== "C"
|
||||
|
|
|
@ -212,7 +212,7 @@ status: new
|
|||
|
||||
- **正例 $coins = [1, 5, 10, 20, 50, 100]$**:在该硬币组合下,给定任意 $amt$ ,贪心算法都可以找出最优解。
|
||||
- **反例 $coins = [1, 20, 50]$**:假设 $amt = 60$ ,贪心算法只能找到 $50 + 1 \times 10$ 的兑换组合,共计 $11$ 枚硬币,但动态规划可以找到最优解 $20 + 20 + 20$ ,仅需 $3$ 枚硬币。
|
||||
- **反例 $coins = [1, 49, 50]$**:假设 $amt = 98$ ,贪心算法只能找到 $50 + 1 \times 48$ 的兑换组合,共计 $48$ 枚硬币,但动态规划可以找到最优解 $49 + 49$ ,仅需 $2$ 枚硬币。
|
||||
- **反例 $coins = [1, 49, 50]$**:假设 $amt = 98$ ,贪心算法只能找到 $50 + 1 \times 48$ 的兑换组合,共计 $49$ 枚硬币,但动态规划可以找到最优解 $49 + 49$ ,仅需 $2$ 枚硬币。
|
||||
|
||||
![贪心无法找出最优解的示例](greedy_algorithm.assets/coin_change_greedy_vs_dp.png)
|
||||
|
||||
|
|
|
@ -238,6 +238,8 @@ comments: true
|
|||
for (auto &bucket : bucketsTmp) {
|
||||
for (Pair *pair : bucket) {
|
||||
put(pair->key, pair->val);
|
||||
// 释放内存
|
||||
delete pair;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -810,7 +812,128 @@ comments: true
|
|||
=== "Rust"
|
||||
|
||||
```rust title="hash_map_chaining.rs"
|
||||
[class]{HashMapChaining}-[func]{}
|
||||
/* 链式地址哈希表 */
|
||||
struct HashMapChaining {
|
||||
size: i32,
|
||||
capacity: i32,
|
||||
load_thres: f32,
|
||||
extend_ratio: i32,
|
||||
buckets: Vec<Vec<Pair>>,
|
||||
}
|
||||
|
||||
impl HashMapChaining {
|
||||
/* 构造方法 */
|
||||
fn new() -> Self {
|
||||
Self {
|
||||
size: 0,
|
||||
capacity: 4,
|
||||
load_thres: 2.0 / 3.0,
|
||||
extend_ratio: 2,
|
||||
buckets: vec![vec![]; 4],
|
||||
}
|
||||
}
|
||||
|
||||
/* 哈希函数 */
|
||||
fn hash_func(&self, key: i32) -> usize {
|
||||
key as usize % self.capacity as usize
|
||||
}
|
||||
|
||||
/* 负载因子 */
|
||||
fn load_factor(&self) -> f32 {
|
||||
self.size as f32 / self.capacity as f32
|
||||
}
|
||||
|
||||
/* 删除操作 */
|
||||
fn remove(&mut self, key: i32) -> Option<String> {
|
||||
let index = self.hash_func(key);
|
||||
let bucket = &mut self.buckets[index];
|
||||
|
||||
// 遍历桶,从中删除键值对
|
||||
for i in 0..bucket.len() {
|
||||
if bucket[i].key == key {
|
||||
let pair = bucket.remove(i);
|
||||
self.size -= 1;
|
||||
return Some(pair.val);
|
||||
}
|
||||
}
|
||||
|
||||
// 若未找到 key 则返回 None
|
||||
None
|
||||
}
|
||||
|
||||
/* 扩容哈希表 */
|
||||
fn extend(&mut self) {
|
||||
// 暂存原哈希表
|
||||
let buckets_tmp = std::mem::replace(&mut self.buckets, vec![]);
|
||||
|
||||
// 初始化扩容后的新哈希表
|
||||
self.capacity *= self.extend_ratio;
|
||||
self.buckets = vec![Vec::new(); self.capacity as usize];
|
||||
self.size = 0;
|
||||
|
||||
// 将键值对从原哈希表搬运至新哈希表
|
||||
for bucket in buckets_tmp {
|
||||
for pair in bucket {
|
||||
self.put(pair.key, pair.val);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* 打印哈希表 */
|
||||
fn print(&self) {
|
||||
for bucket in &self.buckets {
|
||||
let mut res = Vec::new();
|
||||
for pair in bucket {
|
||||
res.push(format!("{} -> {}", pair.key, pair.val));
|
||||
}
|
||||
println!("{:?}", res);
|
||||
}
|
||||
}
|
||||
|
||||
/* 添加操作 */
|
||||
fn put(&mut self, key: i32, val: String) {
|
||||
// 当负载因子超过阈值时,执行扩容
|
||||
if self.load_factor() > self.load_thres {
|
||||
self.extend();
|
||||
}
|
||||
|
||||
let index = self.hash_func(key);
|
||||
let bucket = &mut self.buckets[index];
|
||||
|
||||
// 遍历桶,若遇到指定 key ,则更新对应 val 并返回
|
||||
for pair in bucket {
|
||||
if pair.key == key {
|
||||
pair.val = val.clone();
|
||||
return;
|
||||
}
|
||||
}
|
||||
let bucket = &mut self.buckets[index];
|
||||
|
||||
// 若无该 key ,则将键值对添加至尾部
|
||||
let pair = Pair {
|
||||
key,
|
||||
val: val.clone(),
|
||||
};
|
||||
bucket.push(pair);
|
||||
self.size += 1;
|
||||
}
|
||||
|
||||
/* 查询操作 */
|
||||
fn get(&self, key: i32) -> Option<&str> {
|
||||
let index = self.hash_func(key);
|
||||
let bucket = &self.buckets[index];
|
||||
|
||||
// 遍历桶,若找到 key 则返回对应 val
|
||||
for pair in bucket {
|
||||
if pair.key == key {
|
||||
return Some(&pair.val);
|
||||
}
|
||||
}
|
||||
|
||||
// 若未找到 key 则返回 None
|
||||
None
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
!!! tip
|
||||
|
@ -1718,7 +1841,146 @@ comments: true
|
|||
=== "Rust"
|
||||
|
||||
```rust title="hash_map_open_addressing.rs"
|
||||
[class]{HashMapOpenAddressing}-[func]{}
|
||||
/* 开放寻址哈希表 */
|
||||
struct HashMapOpenAddressing {
|
||||
size: usize,
|
||||
capacity: usize,
|
||||
load_thres: f32,
|
||||
extend_ratio: usize,
|
||||
buckets: Vec<Option<Pair>>,
|
||||
removed: Pair,
|
||||
}
|
||||
|
||||
|
||||
impl HashMapOpenAddressing {
|
||||
/* 构造方法 */
|
||||
fn new() -> Self {
|
||||
Self {
|
||||
size: 0,
|
||||
capacity: 4,
|
||||
load_thres: 2.0 / 3.0,
|
||||
extend_ratio: 2,
|
||||
buckets: vec![None; 4],
|
||||
removed: Pair {
|
||||
key: -1,
|
||||
val: "-1".to_string(),
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
/* 哈希函数 */
|
||||
fn hash_func(&self, key: i32) -> usize {
|
||||
(key % self.capacity as i32) as usize
|
||||
}
|
||||
|
||||
/* 负载因子 */
|
||||
fn load_factor(&self) -> f32 {
|
||||
self.size as f32 / self.capacity as f32
|
||||
}
|
||||
|
||||
/* 查询操作 */
|
||||
fn get(&self, key: i32) -> Option<&str> {
|
||||
let mut index = self.hash_func(key);
|
||||
let capacity = self.capacity;
|
||||
// 线性探测,从 index 开始向后遍历
|
||||
for _ in 0..capacity {
|
||||
// 计算桶索引,越过尾部返回头部
|
||||
let j = (index + 1) % capacity;
|
||||
match &self.buckets[j] {
|
||||
// 若遇到空桶,说明无此 key ,则返回 None
|
||||
None => return None,
|
||||
// 若遇到指定 key ,则返回对应 val
|
||||
Some(pair) if pair.key == key && pair != &self.removed => return Some(&pair.val),
|
||||
_ => index = j,
|
||||
}
|
||||
}
|
||||
|
||||
None
|
||||
}
|
||||
|
||||
/* 添加操作 */
|
||||
fn put(&mut self, key: i32, val: String) {
|
||||
// 当负载因子超过阈值时,执行扩容
|
||||
if self.load_factor() > self.load_thres {
|
||||
self.extend();
|
||||
}
|
||||
|
||||
let mut index = self.hash_func(key);
|
||||
let capacity = self.capacity;
|
||||
|
||||
// 线性探测,从 index 开始向后遍历
|
||||
for _ in 0..capacity {
|
||||
//计算桶索引,越过尾部返回头部
|
||||
let j = (index + 1) % capacity;
|
||||
// 若遇到空桶、或带有删除标记的桶,则将键值对放入该桶
|
||||
match &mut self.buckets[j] {
|
||||
bucket @ &mut None | bucket @ &mut Some(Pair { key: -1, .. }) => {
|
||||
*bucket = Some(Pair { key, val });
|
||||
self.size += 1;
|
||||
return;
|
||||
}
|
||||
// 若遇到指定 key ,则更新对应 val
|
||||
Some(pair) if pair.key == key => {
|
||||
pair.val = val;
|
||||
return;
|
||||
}
|
||||
_ => index = j,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* 删除操作 */
|
||||
fn remove(&mut self, key: i32) {
|
||||
let mut index = self.hash_func(key);
|
||||
let capacity = self.capacity;
|
||||
|
||||
// 遍历桶,从中删除键值对
|
||||
for _ in 0..capacity {
|
||||
let j = (index + 1) % capacity;
|
||||
match &mut self.buckets[j] {
|
||||
// 若遇到空桶,说明无此 key ,则直接返回
|
||||
None => return,
|
||||
// 若遇到指定 key ,则标记删除并返回
|
||||
Some(pair) if pair.key == key => {
|
||||
*pair = Pair {
|
||||
key: -1,
|
||||
val: "-1".to_string(),
|
||||
};
|
||||
self.size -= 1;
|
||||
return;
|
||||
}
|
||||
_ => index = j,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* 扩容哈希表 */
|
||||
fn extend(&mut self) {
|
||||
// 暂存原哈希表
|
||||
let buckets_tmp = self.buckets.clone();
|
||||
// 初始化扩容后的新哈希表
|
||||
self.capacity *= self.extend_ratio;
|
||||
self.buckets = vec![None; self.capacity];
|
||||
self.size = 0;
|
||||
|
||||
// 将键值对从原哈希表搬运至新哈希表
|
||||
for pair in buckets_tmp {
|
||||
if let Some(pair) = pair {
|
||||
self.put(pair.key, pair.val);
|
||||
}
|
||||
}
|
||||
}
|
||||
/* 打印哈希表 */
|
||||
fn print(&self) {
|
||||
for pair in &self.buckets {
|
||||
match pair {
|
||||
Some(pair) => println!("{} -> {}", pair.key, pair.val),
|
||||
None => println!("None"),
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### 多次哈希
|
||||
|
|
|
@ -40,4 +40,13 @@ comments: true
|
|||
|
||||
!!! question "请问如何从一组输入数据构建一个二叉搜索树?根节点的选择是不是很重要?"
|
||||
|
||||
是的,构建树的方法是 `build_tree()` ,已在源代码中给出。至于根节点的选择,我们通常会将输入数据排序,然后用中点元素作为根节点,再递归地构建左右子树。这样做可以最大程度保证树的平衡性。
|
||||
是的,构建树的方法已在二叉搜索树代码中的 `build_tree()` 方法中给出。至于根节点的选择,我们通常会将输入数据排序,然后用中点元素作为根节点,再递归地构建左右子树。这样做可以最大程度保证树的平衡性。
|
||||
|
||||
!!! question "在 Java 中,字符串对比是否一定要用 `equals()` 方法?"
|
||||
|
||||
在 Java 中,对于基本数据类型,`==` 用于对比两个变量的值是否相等。对于引用类型,两种符号的工作原理不同:
|
||||
|
||||
- `==` :用来比较两个变量是否指向同一个对象,即它们在内存中的位置是否相同。
|
||||
- `equals()`:用来对比两个对象的值是否相等。
|
||||
|
||||
因此如果要对比值,我们通常会用 `equals()` 。然而,通过 `String a = "hi"; String b = "hi";` 初始化的字符串都存储在字符串常量池中,它们指向同一个对象,因此也可以用 `a == b` 来比较两个字符串的内容。
|
||||
|
|
Loading…
Reference in a new issue