Update data_and_memory.md

This commit is contained in:
krahets 2023-02-22 19:29:07 +08:00
parent d87c9b5084
commit a2b74943a2

View file

@ -47,9 +47,9 @@ comments: true
### 浮点数表示方式 *
细心的你可能会疑惑: int 和 float 长度相同,都是 4 bytes **但为什么 float 的取值范围远大于 int** 这是因为浮点数 float 采用了不同的表示方式
细心的你可能会疑惑: int 和 float 长度相同,都是 4 bytes **但为什么 float 的取值范围远大于 int** 按说 float 需要表示小数,取值范围应该变小才对
IEEE 754 标准规定32-bit 长度的 float 由以下部分构成:
其实,这是因为浮点数 float 采用了不同的表示方式。IEEE 754 标准规定32-bit 长度的 float 由以下部分构成:
- 符号位 $\mathrm{S}$ :占 1 bit
- 指数位 $\mathrm{E}$ :占 8 bits
@ -67,7 +67,14 @@ $$
\text { val }=(-1)^{\mathrm{S}} \times 2^{\mathrm{E} -127} \times (1 + \mathrm{N})
$$
其中 $\mathrm{S} \in \{-1, 1\}$ , $\mathrm{E} \in \{ 1, 2, \dots, 254 \}$ , $(1 + \mathrm{N}) = 1+\sum_{i=1}^{23} b_{23-i} 2^{-i} \subset [1, 2 - 2^{-23}]$ 。
其中各项的取值范围为
$$
\begin{aligned}
\mathrm{S} \in & \{ 0, 1\} , \quad \mathrm{E} \in \{ 1, 2, \dots, 254 \} \newline
(1 + \mathrm{N}) = & (1 + \sum_{i=1}^{23} b_{23-i} 2^{-i}) \subset [1, 2 - 2^{-23}]
\end{aligned}
$$
![IEEE-754-float](data_and_memory.assets/IEEE-754-float.png)
@ -77,7 +84,7 @@ $$
\text { val } = (-1)^0 \times 2^{124 - 127} \times (1 + 0.375) = 0.171875
$$
现在我们可以回答开始的问题:**float 的表示方式包含指数位,导致其取值范围远大于 int** 。根据以上计算, float 可表示的最大正数为 $2^{127} \times (2 - 2^{-23}) \approx 3.4 \times 10^{38}$ ,切换符号位便可得到最小负数。
现在我们可以回答开始的问题:**float 的表示方式包含指数位,导致其取值范围远大于 int** 。根据以上计算, float 可表示的最大正数为 $2^{254 - 127} \times (2 - 2^{-23}) \approx 3.4 \times 10^{38}$ ,切换符号位便可得到最小负数。
**浮点数 float 虽然拓展了取值范围,但副作用是牺牲了精度**。整数类型 int 将全部 32 位用于表示数字,数字是均匀分布的;而由于指数位的存在,浮点数 float 的数值越大,相邻两个数字之间的差值就会趋向越大。