1. Fix the import error.

2. Some codes fine tuning.
This commit is contained in:
Yudong Jin 2022-11-26 01:40:49 +08:00
parent 0585f20970
commit 9f883d5888
9 changed files with 206 additions and 45 deletions

View file

@ -4,11 +4,9 @@ Created Time: 2022-11-25
Author: timi (xisunyy@163.com)
'''
from include import *
import sys
import os.path as osp
import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from include import *
""" 冒泡排序 """
def bubble_sort(nums):
@ -17,11 +15,10 @@ def bubble_sort(nums):
for i in range(n - 1, -1, -1):
# 内循环:冒泡操作
for j in range(i):
# 交换 nums[j] 与 nums[j + 1]
if nums[j] > nums[j + 1]:
# 交换 nums[j] 与 nums[j + 1]
nums[j], nums[j + 1] = nums[j + 1], nums[j]
""" 冒泡排序(标志优化) """
def bubble_sort_with_flag(nums):
n = len(nums)
@ -30,19 +27,20 @@ def bubble_sort_with_flag(nums):
flag = False # 初始化标志位
# 内循环:冒泡操作
for j in range(i):
# 交换 nums[j] 与 nums[j + 1]
if nums[j] > nums[j + 1]:
# 交换 nums[j] 与 nums[j + 1]
nums[j], nums[j + 1] = nums[j + 1], nums[j]
flag = True # 记录交换元素
if not flag:
break # 此轮冒泡未交换任何元素,直接跳出
""" Driver Code """
if __name__ == '__main__':
nums = [4, 1, 3, 1, 5, 2]
bubble_sort(nums)
print("排序后数组 nums = ", nums)
print("排序后数组 nums =", nums)
nums1 = [4, 1, 3, 1, 5, 2]
bubble_sort_with_flag(nums1)
print("排序后数组 nums = ", nums1)
print("排序后数组 nums =", nums1)

View file

@ -4,11 +4,9 @@ Created Time: 2022-11-25
Author: timi (xisunyy@163.com)
'''
from include import *
import sys
import os.path as osp
import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from include import *
""" 插入排序 """
def insertion_sort(nums):
@ -23,6 +21,7 @@ def insertion_sort(nums):
nums[j + 1] = base # 2. 将 base 赋值到正确位置
""" Driver Code """
if __name__ == '__main__':
nums = [4, 1, 3, 1, 5, 2]
insertion_sort(nums)

View file

@ -4,11 +4,9 @@ Created Time: 2022-11-25
Author: timi (xisunyy@163.com)
'''
from include import *
import sys
import os.path as osp
import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from include import *
"""
合并左子数组和右子数组
@ -52,7 +50,8 @@ def merge_sort(nums, left, right):
merge(nums, left, mid, right)
""" Driver Code """
if __name__ == '__main__':
nums = [4, 1, 3, 1, 5, 2]
merge_sort(nums, 0, len(nums) - 1)
print("归并排序完成后 nums = ", nums)
print("归并排序完成后 nums =", nums)

View file

@ -4,15 +4,12 @@ Created Time: 2022-11-25
Author: timi (xisunyy@163.com)
'''
from include import *
import sys
import os.path as osp
import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from include import *
""" 快速排序类 """
class QuickSort(object):
class QuickSort:
""" 哨兵划分 """
def partition(self, nums, left, right):
# 以 nums[left] 作为基准数
@ -39,10 +36,8 @@ class QuickSort(object):
self.quick_sort(nums, left, pivot - 1)
self.quick_sort(nums, pivot + 1, right)
""" 快速排序类(中位基准数优化)"""
class QuickSortMedian():
class QuickSortMedian:
""" 选取三个元素的中位数 """
def median_three(self, nums, left, mid, right):
# 使用了异或操作来简化代码
@ -82,10 +77,8 @@ class QuickSortMedian():
self.quick_sort(nums, left, pivot - 1)
self.quick_sort(nums, pivot + 1, right)
""" 快速排序类(尾递归优化) """
class QuickSortTailCall():
class QuickSortTailCall:
""" 哨兵划分 """
def partition(self, nums, left, right):
# 以 nums[left] 作为基准数
@ -116,18 +109,19 @@ class QuickSortTailCall():
right = pivot - 1 # 剩余待排序区间为 [left, pivot - 1]
""" Driver Code """
if __name__ == '__main__':
# 快速排序
nums = [4, 1, 3, 1, 5, 2]
QuickSort().quick_sort(nums, 0, len(nums) - 1)
print("快速排序完成后 nums = ", nums)
print("快速排序完成后 nums =", nums)
# 快速排序(中位基准数优化)
nums1 = [4, 1, 3, 1, 5, 2]
QuickSortMedian().quick_sort(nums1, 0, len(nums1) - 1)
print("快速排序(中位基准数优化)完成后 nums = ", nums)
print("快速排序(中位基准数优化)完成后 nums =", nums)
# 快速排序(尾递归优化)
nums2 = [4, 1, 3, 1, 5, 2]
QuickSortTailCall().quick_sort(nums, 0, len(nums2) - 1)
print("快速排序(尾递归优化)完成后 nums = ", nums)
print("快速排序(尾递归优化)完成后 nums =", nums)

View file

@ -1,3 +1,7 @@
---
comments: true
---
# 权衡时间与空间
理想情况下,我们希望算法的时间复杂度和空间复杂度都能够达到最优,而实际上,同时优化时间复杂度和空间复杂度是非常困难的。

View file

@ -47,9 +47,7 @@ comments: true
## 算法流程
1. 设数组长度为 $n$ ,完成第一轮「冒泡」后,数组最大元素已在正确位置,接下来只需排序剩余 $n - 1$ 个元素。
2. 同理,对剩余 $n - 1$ 个元素执行「冒泡」,可将第二大元素交换至正确位置,因而待排序元素只剩 $n - 2$ 个。
3. 以此类推…… **循环 $n - 1$ 轮「冒泡」,即可完成整个数组的排序**
![bubble_sort](bubble_sort.assets/bubble_sort.png)
@ -76,6 +74,21 @@ comments: true
}
```
=== "Python"
```python
""" 冒泡排序 """
def bubble_sort(nums):
n = len(nums)
# 外循环:待排序元素数量为 n-1, n-2, ..., 1
for i in range(n - 1, -1, -1):
# 内循环:冒泡操作
for j in range(i):
if nums[j] > nums[j + 1]:
# 交换 nums[j] 与 nums[j + 1]
nums[j], nums[j + 1] = nums[j + 1], nums[j]
```
## 算法特性
**时间复杂度 $O(n^2)$ ** 各轮「冒泡」遍历的数组长度为 $n - 1$ , $n - 2$ , $\cdots$ , $2$ , $1$ 次,求和为 $\frac{(n - 1) n}{2}$ ,因此使用 $O(n^2)$ 时间。
@ -116,3 +129,22 @@ comments: true
}
}
```
=== "Python"
```python
""" 冒泡排序(标志优化) """
def bubble_sort_with_flag(nums):
n = len(nums)
# 外循环:待排序元素数量为 n-1, n-2, ..., 1
for i in range(n - 1, -1, -1):
flag = False # 初始化标志位
# 内循环:冒泡操作
for j in range(i):
if nums[j] > nums[j + 1]:
# 交换 nums[j] 与 nums[j + 1]
nums[j], nums[j + 1] = nums[j + 1], nums[j]
flag = True # 记录交换元素
if not flag:
break # 此轮冒泡未交换任何元素,直接跳出
```

View file

@ -44,6 +44,22 @@ comments: true
}
```
=== "Python"
```python
""" 插入排序 """
def insertion_sort(nums):
# 外循环base = nums[1], nums[2], ..., nums[n-1]
for i in range(1, len(nums)):
base = nums[i]
j = i - 1
# 内循环:将 base 插入到左边的正确位置
while j >= 0 and nums[j] > base:
nums[j + 1] = nums[j] # 1. 将 nums[j] 向右移动一位
j -= 1
nums[j + 1] = base # 2. 将 base 赋值到正确位置
```
## 算法特性
**时间复杂度 $O(n^2)$ ** 最差情况下,各轮插入操作循环 $n - 1$ , $n-2$ , $\cdots$ , $2$ , $1$ 次,求和为 $\frac{(n - 1) n}{2}$ ,使用 $O(n^2)$ 时间。

View file

@ -7,7 +7,6 @@ comments: true
「归并排序 Merge Sort」是算法中 “分治思想” 的典型体现,其有「划分」和「合并」两个阶段:
1. **划分阶段:** 通过递归不断 **将数组从中点位置划分开**,将长数组的排序问题转化为短数组的排序问题;
2. **合并阶段:** 划分到子数组长度为 1 时,开始向上合并,不断将 **左、右两个短排序数组** 合并为 **一个长排序数组**,直至合并至原数组时完成排序;
![merge_sort_preview](merge_sort.assets/merge_sort_preview.png)
@ -104,6 +103,51 @@ comments: true
}
```
=== "Python"
```python title="merge_sort.py"
"""
合并左子数组和右子数组
左子数组区间 [left, mid]
右子数组区间 [mid + 1, right]
"""
def merge(nums, left, mid, right):
# 初始化辅助数组 借助 copy模块
tmp = nums[left:right + 1]
# 左子数组的起始索引和结束索引
left_start, left_end = left - left, mid - left
# 右子数组的起始索引和结束索引
right_start, right_end = mid + 1 - left, right - left
# i, j 分别指向左子数组、右子数组的首元素
i, j = left_start, right_start
# 通过覆盖原数组 nums 来合并左子数组和右子数组
for k in range(left, right + 1):
# 若 “左子数组已全部合并完”,则选取右子数组元素,并且 j++
if i > left_end:
nums[k] = tmp[j]
j += 1
# 否则,若 “右子数组已全部合并完” 或 “左子数组元素 < 右子数组元素则选取左子数组元素并且 i++
elif j > right_end or tmp[i] <= tmp[j]:
nums[k] = tmp[i]
i += 1
# 否则,若 “左子数组元素 > 右子数组元素”,则选取右子数组元素,并且 j++
else:
nums[k] = tmp[j]
j += 1
""" 归并排序 """
def merge_sort(nums, left, right):
# 终止条件
if left >= right:
return # 当子数组长度为 1 时终止递归
# 划分阶段
mid = (left + right) // 2 # 计算中点
merge_sort(nums, left, mid) # 递归左子数组
merge_sort(nums, mid + 1, right) # 递归右子数组
# 合并阶段
merge(nums, left, mid, right)
```
下面重点解释一下合并方法 `merge()` 的流程:
1. 初始化一个辅助数组 `tmp` 暂存待合并区间 `[left, right]` 内的元素,后续通过覆盖原数组 `nums` 的元素来实现合并;

View file

@ -61,6 +61,25 @@ comments: true
}
```
=== "Python"
```python title="quick_sort.py"
""" 哨兵划分 """
def partition(self, nums, left, right):
# 以 nums[left] 作为基准数
i, j = left, right
while i < j:
while i < j and nums[j] >= nums[left]:
j -= 1 # 从右向左找首个小于基准数的元素
while i < j and nums[i] <= nums[left]:
i += 1 # 从左向右找首个大于基准数的元素
# 元素交换
nums[i], nums[j] = nums[j], nums[i]
# 将基准数交换至两子数组的分界线
nums[i], nums[left] = nums[left], nums[i]
return i # 返回基准数的索引
```
!!! note "快速排序的分治思想"
哨兵划分的实质是将 **一个长数组的排序问题** 简化为 **两个短数组的排序问题**
@ -93,6 +112,21 @@ comments: true
}
```
=== "Python"
```python title="quick_sort.py"
""" 快速排序 """
def quick_sort(self, nums, left, right):
# 子数组长度为 1 时终止递归
if left >= right:
return
# 哨兵划分
pivot = self.partition(nums, left, right)
# 递归左子数组、右子数组
self.quick_sort(nums, left, pivot - 1)
self.quick_sort(nums, pivot + 1, right)
```
## 算法特性
**平均时间复杂度 $O(n \log n)$ ** 平均情况下,哨兵划分的递归层数为 $\log n$ ,每层中的总循环数为 $n$ ,总体使用 $O(n \log n)$ 时间。
@ -149,6 +183,29 @@ comments: true
}
```
=== "Python"
```python title="quick_sort.py"
""" 选取三个元素的中位数 """
def median_three(self, nums, left, mid, right):
# 使用了异或操作来简化代码
# 异或规则为 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1
if (nums[left] > nums[mid]) ^ (nums[left] > nums[right]):
return left
elif (nums[mid] < nums[left]) ^ (nums[mid] > nums[right]):
return mid
return right
""" 哨兵划分(三数取中值) """
def partition(self, nums, left, right):
# 以 nums[left] 作为基准数
med = self.median_three(nums, left, (left + right) // 2, right)
# 将中位数交换至数组最左端
nums[left], nums[med] = nums[med], nums[left]
# 以 nums[left] 作为基准数
# 下同省略...
```
## 尾递归优化
**普通快速排序在某些输入下的空间效率变差。** 仍然以完全倒序的输入数组为例,由于每轮哨兵划分后右子数组长度为 0 ,那么将形成一个高度为 $n - 1$ 的递归树,此时使用的栈帧空间大小劣化至 $O(n)$ 。
@ -175,3 +232,21 @@ comments: true
}
}
```
=== "Python"
```python title="quick_sort.py"
""" 快速排序(尾递归优化) """
def quick_sort(self, nums, left, right):
# 子数组长度为 1 时终止
while left < right:
# 哨兵划分操作
pivot = self.partition(nums, left, right)
# 对两个子数组中较短的那个执行快排
if pivot - left < right - pivot:
self.quick_sort(nums, left, pivot - 1) # 递归排序左子数组
left = pivot + 1 # 剩余待排序区间为 [pivot + 1, right]
else:
self.quick_sort(nums, pivot + 1, right) # 递归排序右子数组
right = pivot - 1 # 剩余待排序区间为 [left, pivot - 1]
```