mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-25 01:16:31 +08:00
feat: add top_k.c and refactor top_k.js (#889)
* Add top_k.c based on my_heap.c * Improve the implementation of top_k.js * Add a comment to top_k
This commit is contained in:
parent
9f4076d1c1
commit
7822bf9cd4
13 changed files with 190 additions and 73 deletions
|
@ -1,2 +1,2 @@
|
|||
add_executable(my_heap my_heap.c)
|
||||
|
||||
add_executable(my_heap_test my_heap_test.c)
|
||||
add_executable(top_k top_k.c)
|
||||
|
|
|
@ -34,6 +34,12 @@ MaxHeap *newMaxHeap(int nums[], int size) {
|
|||
return h;
|
||||
}
|
||||
|
||||
/* 析构函数 */
|
||||
void freeMaxHeap(MaxHeap *h) {
|
||||
// 释放内存
|
||||
free(h);
|
||||
}
|
||||
|
||||
/* 获取左子节点索引 */
|
||||
int left(MaxHeap *h, int i) {
|
||||
return 2 * i + 1;
|
||||
|
@ -144,37 +150,3 @@ void siftUp(MaxHeap *h, int i) {
|
|||
i = p;
|
||||
}
|
||||
}
|
||||
|
||||
/* Driver Code */
|
||||
int main() {
|
||||
/* 初始化堆 */
|
||||
// 初始化大顶堆
|
||||
int nums[] = {9, 8, 6, 6, 7, 5, 2, 1, 4, 3, 6, 2};
|
||||
MaxHeap *heap = newMaxHeap(nums, sizeof(nums) / sizeof(int));
|
||||
printf("输入数组并建堆后\n");
|
||||
printHeap(heap->data, heap->size);
|
||||
|
||||
/* 获取堆顶元素 */
|
||||
printf("\n堆顶元素为 %d\n", peek(heap));
|
||||
|
||||
/* 元素入堆 */
|
||||
push(heap, 7);
|
||||
printf("\n元素 7 入堆后\n");
|
||||
printHeap(heap->data, heap->size);
|
||||
|
||||
/* 堆顶元素出堆 */
|
||||
int top = pop(heap);
|
||||
printf("\n堆顶元素 %d 出堆后\n", top);
|
||||
printHeap(heap->data, heap->size);
|
||||
|
||||
/* 获取堆大小 */
|
||||
printf("\n堆元素数量为 %d\n", size(heap));
|
||||
|
||||
/* 判断堆是否为空 */
|
||||
printf("\n堆是否为空 %d\n", isEmpty(heap));
|
||||
|
||||
// 释放内存
|
||||
free(heap);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
41
codes/c/chapter_heap/my_heap_test.c
Normal file
41
codes/c/chapter_heap/my_heap_test.c
Normal file
|
@ -0,0 +1,41 @@
|
|||
/**
|
||||
* File: my_heap_test.c
|
||||
* Created Time: 2023-01-15
|
||||
* Author: Reanon (793584285@qq.com)
|
||||
*/
|
||||
|
||||
#include "my_heap.c"
|
||||
|
||||
/* Driver Code */
|
||||
int main() {
|
||||
/* 初始化堆 */
|
||||
// 初始化大顶堆
|
||||
int nums[] = {9, 8, 6, 6, 7, 5, 2, 1, 4, 3, 6, 2};
|
||||
MaxHeap *heap = newMaxHeap(nums, sizeof(nums) / sizeof(int));
|
||||
printf("输入数组并建堆后\n");
|
||||
printHeap(heap->data, heap->size);
|
||||
|
||||
/* 获取堆顶元素 */
|
||||
printf("\n堆顶元素为 %d\n", peek(heap));
|
||||
|
||||
/* 元素入堆 */
|
||||
push(heap, 7);
|
||||
printf("\n元素 7 入堆后\n");
|
||||
printHeap(heap->data, heap->size);
|
||||
|
||||
/* 堆顶元素出堆 */
|
||||
int top = pop(heap);
|
||||
printf("\n堆顶元素 %d 出堆后\n", top);
|
||||
printHeap(heap->data, heap->size);
|
||||
|
||||
/* 获取堆大小 */
|
||||
printf("\n堆元素数量为 %d\n", size(heap));
|
||||
|
||||
/* 判断堆是否为空 */
|
||||
printf("\n堆是否为空 %d\n", isEmpty(heap));
|
||||
|
||||
// 释放内存
|
||||
freeMaxHeap(heap);
|
||||
|
||||
return 0;
|
||||
}
|
73
codes/c/chapter_heap/top_k.c
Normal file
73
codes/c/chapter_heap/top_k.c
Normal file
|
@ -0,0 +1,73 @@
|
|||
/**
|
||||
* File: top_k.c
|
||||
* Created Time: 2023-10-26
|
||||
* Author: Krahets (krahets163.com)
|
||||
*/
|
||||
|
||||
#include "my_heap.c"
|
||||
|
||||
/* 元素入堆 */
|
||||
void pushMinHeap(MaxHeap *maxHeap, int val) {
|
||||
// 元素取反
|
||||
push(maxHeap, -val);
|
||||
}
|
||||
|
||||
/* 元素出堆 */
|
||||
int popMinHeap(MaxHeap *maxHeap) {
|
||||
// 元素取反
|
||||
return -pop(maxHeap);
|
||||
}
|
||||
|
||||
/* 访问堆顶元素 */
|
||||
int peekMinHeap(MaxHeap *maxHeap) {
|
||||
// 元素取反
|
||||
return -peek(maxHeap);
|
||||
}
|
||||
|
||||
/* 取出堆中元素 */
|
||||
int *getMinHeap(MaxHeap *maxHeap) {
|
||||
// 将堆中所有元素取反并存入 res 数组
|
||||
int *res = (int *)malloc(maxHeap->size * sizeof(int));
|
||||
for (int i = 0; i < maxHeap->size; i++) {
|
||||
res[i] = -maxHeap->data[i];
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
// 基于堆查找数组中最大的 k 个元素的函数
|
||||
int *topKHeap(int *nums, int sizeNums, int k) {
|
||||
// 初始化小顶堆
|
||||
// 请注意:我们将堆中所有元素取反,从而用大顶堆来模拟小顶堆
|
||||
int empty[0];
|
||||
MaxHeap *maxHeap = newMaxHeap(empty, 0);
|
||||
// 将数组的前 k 个元素入堆
|
||||
for (int i = 0; i < k; i++) {
|
||||
pushMinHeap(maxHeap, nums[i]);
|
||||
}
|
||||
// 从第 k+1 个元素开始,保持堆的长度为 k
|
||||
for (int i = k; i < sizeNums; i++) {
|
||||
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
|
||||
if (nums[i] > peekMinHeap(maxHeap)) {
|
||||
popMinHeap(maxHeap);
|
||||
pushMinHeap(maxHeap, nums[i]);
|
||||
}
|
||||
}
|
||||
int *res = getMinHeap(maxHeap);
|
||||
// 释放内存
|
||||
freeMaxHeap(maxHeap);
|
||||
return res;
|
||||
}
|
||||
|
||||
/* Driver Code */
|
||||
int main() {
|
||||
int nums[] = {1, 7, 6, 3, 2};
|
||||
int k = 3;
|
||||
int sizeNums = sizeof(nums) / sizeof(nums[0]);
|
||||
|
||||
int *res = topKHeap(nums, sizeNums, k);
|
||||
printf("最大的 %d 个元素为: ", k);
|
||||
printArray(res, k);
|
||||
|
||||
free(res);
|
||||
return 0;
|
||||
}
|
|
@ -8,6 +8,7 @@
|
|||
|
||||
/* 基于堆查找数组中最大的 k 个元素 */
|
||||
priority_queue<int, vector<int>, greater<int>> topKHeap(vector<int> &nums, int k) {
|
||||
// 初始化小顶堆
|
||||
priority_queue<int, vector<int>, greater<int>> heap;
|
||||
// 将数组的前 k 个元素入堆
|
||||
for (int i = 0; i < k; i++) {
|
||||
|
|
|
@ -9,6 +9,7 @@ namespace hello_algo.chapter_heap;
|
|||
public class top_k {
|
||||
/* 基于堆查找数组中最大的 k 个元素 */
|
||||
public static PriorityQueue<int, int> TopKHeap(int[] nums, int k) {
|
||||
// 初始化小顶堆
|
||||
PriorityQueue<int, int> heap = new();
|
||||
// 将数组的前 k 个元素入堆
|
||||
for (int i = 0; i < k; i++) {
|
||||
|
|
|
@ -8,7 +8,7 @@ import '../utils/print_util.dart';
|
|||
|
||||
/* 基于堆查找数组中最大的 k 个元素 */
|
||||
MinHeap topKHeap(List<int> nums, int k) {
|
||||
// 将数组的前 k 个元素入堆
|
||||
// 初始化小顶堆,将数组的前 k 个元素入堆
|
||||
MinHeap heap = MinHeap(nums.sublist(0, k));
|
||||
// 从第 k+1 个元素开始,保持堆的长度为 k
|
||||
for (int i = k; i < nums.length; i++) {
|
||||
|
|
|
@ -32,6 +32,7 @@ func (h *minHeap) Top() any {
|
|||
|
||||
/* 基于堆查找数组中最大的 k 个元素 */
|
||||
func topKHeap(nums []int, k int) *minHeap {
|
||||
// 初始化小顶堆
|
||||
h := &minHeap{}
|
||||
heap.Init(h)
|
||||
// 将数组的前 k 个元素入堆
|
||||
|
|
|
@ -12,6 +12,7 @@ import java.util.*;
|
|||
public class top_k {
|
||||
/* 基于堆查找数组中最大的 k 个元素 */
|
||||
static Queue<Integer> topKHeap(int[] nums, int k) {
|
||||
// 初始化小顶堆
|
||||
Queue<Integer> heap = new PriorityQueue<Integer>();
|
||||
// 将数组的前 k 个元素入堆
|
||||
for (int i = 0; i < k; i++) {
|
||||
|
|
|
@ -123,33 +123,35 @@ class MaxHeap {
|
|||
}
|
||||
|
||||
/* Driver Code */
|
||||
/* 初始化大顶堆 */
|
||||
const maxHeap = new MaxHeap([9, 8, 6, 6, 7, 5, 2, 1, 4, 3, 6, 2]);
|
||||
console.log('\n输入列表并建堆后');
|
||||
maxHeap.print();
|
||||
if (require.main === module) {
|
||||
/* 初始化大顶堆 */
|
||||
const maxHeap = new MaxHeap([9, 8, 6, 6, 7, 5, 2, 1, 4, 3, 6, 2]);
|
||||
console.log('\n输入列表并建堆后');
|
||||
maxHeap.print();
|
||||
|
||||
/* 获取堆顶元素 */
|
||||
let peek = maxHeap.peek();
|
||||
console.log(`\n堆顶元素为 ${peek}`);
|
||||
/* 获取堆顶元素 */
|
||||
let peek = maxHeap.peek();
|
||||
console.log(`\n堆顶元素为 ${peek}`);
|
||||
|
||||
/* 元素入堆 */
|
||||
let val = 7;
|
||||
maxHeap.push(val);
|
||||
console.log(`\n元素 ${val} 入堆后`);
|
||||
maxHeap.print();
|
||||
/* 元素入堆 */
|
||||
let val = 7;
|
||||
maxHeap.push(val);
|
||||
console.log(`\n元素 ${val} 入堆后`);
|
||||
maxHeap.print();
|
||||
|
||||
/* 堆顶元素出堆 */
|
||||
peek = maxHeap.pop();
|
||||
console.log(`\n堆顶元素 ${peek} 出堆后`);
|
||||
maxHeap.print();
|
||||
/* 堆顶元素出堆 */
|
||||
peek = maxHeap.pop();
|
||||
console.log(`\n堆顶元素 ${peek} 出堆后`);
|
||||
maxHeap.print();
|
||||
|
||||
/* 获取堆大小 */
|
||||
let size = maxHeap.size();
|
||||
console.log(`\n堆元素数量为 ${size}`);
|
||||
/* 获取堆大小 */
|
||||
let size = maxHeap.size();
|
||||
console.log(`\n堆元素数量为 ${size}`);
|
||||
|
||||
/* 判断堆是否为空 */
|
||||
let isEmpty = maxHeap.isEmpty();
|
||||
console.log(`\n堆是否为空 ${isEmpty}`);
|
||||
/* 判断堆是否为空 */
|
||||
let isEmpty = maxHeap.isEmpty();
|
||||
console.log(`\n堆是否为空 ${isEmpty}`);
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
MaxHeap,
|
||||
|
|
|
@ -6,25 +6,49 @@
|
|||
|
||||
const { MaxHeap } = require('./my_heap');
|
||||
|
||||
/* 元素入堆 */
|
||||
function pushMinHeap(maxHeap, val) {
|
||||
// 元素取反
|
||||
maxHeap.push(-val);
|
||||
}
|
||||
|
||||
/* 元素出堆 */
|
||||
function popMinHeap(maxHeap) {
|
||||
// 元素取反
|
||||
return -maxHeap.pop();
|
||||
}
|
||||
|
||||
/* 访问堆顶元素 */
|
||||
function peekMinHeap(maxHeap) {
|
||||
// 元素取反
|
||||
return -maxHeap.peek();
|
||||
}
|
||||
|
||||
/* 取出堆中元素 */
|
||||
function getMinHeap(maxHeap) {
|
||||
// 元素取反
|
||||
return maxHeap.getMaxHeap().map((num) => -num);
|
||||
}
|
||||
|
||||
/* 基于堆查找数组中最大的 k 个元素 */
|
||||
function topKHeap(nums, k) {
|
||||
// 使用大顶堆 MaxHeap ,对数组 nums 取相反数
|
||||
const invertedNums = nums.map((num) => -num);
|
||||
// 初始化小顶堆
|
||||
// 请注意:我们将堆中所有元素取反,从而用大顶堆来模拟小顶堆
|
||||
const maxHeap = new MaxHeap([]);
|
||||
// 将数组的前 k 个元素入堆
|
||||
const heap = new MaxHeap(invertedNums.slice(0, k));
|
||||
for (let i = 0; i < k; i++) {
|
||||
pushMinHeap(maxHeap, nums[i]);
|
||||
}
|
||||
// 从第 k+1 个元素开始,保持堆的长度为 k
|
||||
for (let i = k; i < invertedNums.length; i++) {
|
||||
// 若当前元素小于堆顶元素,则将堆顶元素出堆、当前元素入堆
|
||||
if (invertedNums[i] < heap.peek()) {
|
||||
heap.pop();
|
||||
heap.push(invertedNums[i]);
|
||||
for (let i = k; i < nums.length; i++) {
|
||||
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
|
||||
if (nums[i] > peekMinHeap(maxHeap)) {
|
||||
popMinHeap(maxHeap);
|
||||
pushMinHeap(maxHeap, nums[i]);
|
||||
}
|
||||
}
|
||||
// 取出堆中元素
|
||||
const maxHeap = heap.getMaxHeap();
|
||||
// 对堆中元素取相反数
|
||||
const invertedMaxHeap = maxHeap.map((num) => -num);
|
||||
return invertedMaxHeap;
|
||||
// 返回堆中元素
|
||||
return getMinHeap(maxHeap);
|
||||
}
|
||||
|
||||
/* Driver Code */
|
||||
|
|
|
@ -15,6 +15,7 @@ import heapq
|
|||
|
||||
def top_k_heap(nums: list[int], k: int) -> list[int]:
|
||||
"""基于堆查找数组中最大的 k 个元素"""
|
||||
# 初始化小顶堆
|
||||
heap = []
|
||||
# 将数组的前 k 个元素入堆
|
||||
for i in range(k):
|
||||
|
|
|
@ -11,7 +11,7 @@ use std::collections::BinaryHeap;
|
|||
|
||||
/* 基于堆查找数组中最大的 k 个元素 */
|
||||
fn top_k_heap(nums: Vec<i32>, k: usize) -> BinaryHeap<Reverse<i32>> {
|
||||
// Rust 的 BinaryHeap 是大顶堆,使用 Reverse 将元素大小反转
|
||||
// BinaryHeap 是大顶堆,使用 Reverse 将元素取反,从而实现小顶堆
|
||||
let mut heap = BinaryHeap::<Reverse<i32>>::new();
|
||||
// 将数组的前 k 个元素入堆
|
||||
for &num in nums.iter().take(k) {
|
||||
|
|
Loading…
Reference in a new issue