Add the section of selection sort. (#513)

This commit is contained in:
Yudong Jin 2023-05-24 00:35:46 +08:00 committed by GitHub
parent 5dff1bd0e8
commit 77b4f4c400
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
17 changed files with 218 additions and 8 deletions

View file

@ -0,0 +1,35 @@
/**
* File: selection_sort.cpp
* Created Time: 2023-05-23
* Author: Krahets (krahets@163.com)
*/
#include "../utils/common.hpp"
/* 选择排序 */
void selectionSort(vector<int> &nums) {
int n = nums.size();
// 外循环:未排序区间为 [i, n-1]
for (int i = 0; i < n - 1; i++) {
// 内循环:找到未排序区间 [i, n-1] 中的最小元素
int k = i;
for (int j = i + 1; j < n; j++) {
if (nums[j] < nums[k]) {
k = j; // 更新最小元素
}
}
// 将该最小元素与未排序区间的首个元素交换
swap(nums[i], nums[k]);
}
}
/* Driver Code */
int main() {
vector<int> nums = {4, 1, 3, 1, 5, 2};
selectionSort(nums);
cout << "选择排序完成后 nums = ";
printVector(nums);
return 0;
}

View file

@ -0,0 +1,36 @@
/**
* File: selection_sort.java
* Created Time: 2023-05-23
* Author: Krahets (krahets@163.com)
*/
package chapter_sorting;
import java.util.Arrays;
public class selection_sort {
/* 选择排序 */
public static void selectionSort(int[] nums) {
int n = nums.length;
// 外循环未排序区间为 [i, n-1]
for (int i = 0; i < n - 1; i++) {
// 内循环找到未排序区间 [i, n-1] 中的最小元素
int k = i;
for (int j = i + 1; j < n; j++) {
if (nums[j] < nums[k]) {
k = j; // 更新最小元素
}
}
// 将该最小元素与未排序区间的首个元素交换
int temp = nums[i];
nums[i] = nums[k];
nums[k] = temp;
}
}
public static void main(String[] args) {
int[] nums = { 4, 1, 3, 1, 5, 2 };
selectionSort(nums);
System.out.println("选择排序完成后 nums = " + Arrays.toString(nums));
}
}

View file

@ -0,0 +1,26 @@
"""
File: selection_sort.py
Created Time: 2023-05-22
Author: Krahets (krahets@163.com)
"""
def selection_sort(nums: list[int]):
"""选择排序"""
n = len(nums)
# 外循环:未排序区间为 [i, n-1]
for i in range(n - 1):
# 内循环:找到未排序区间 [i, n-1] 中的最小元素
k = i
for j in range(i + 1, n):
if nums[j] < nums[k]:
k = j # 更新最小元素
# 将该最小元素与未排序区间的首个元素交换
nums[i], nums[k] = nums[k], nums[i]
"""Driver Code"""
if __name__ == "__main__":
nums = [4, 1, 3, 1, 5, 2]
selection_sort(nums)
print("选择排序完成后 nums =", nums)

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 53 KiB

View file

@ -0,0 +1,112 @@
# 选择排序
「选择排序 Insertion Sort」的工作原理非常直接开启一个循环每轮从未排序区间选择最小的元素将其放到已排序区间的末尾。完整步骤如下
1. 初始状态下,所有元素未排序,即未排序(索引)区间为 $[0, n-1]$ 。
2. 选取区间 $[0, n-1]$ 中的最小元素,将其与索引 $0$ 处元素交换。完成后,数组前 1 个元素已排序。
3. 选取区间 $[1, n-1]$ 中的最小元素,将其与索引 $1$ 处元素交换。完成后,数组前 2 个元素已排序。
4. 以此类推。经过 $n - 1$ 轮选择与交换后,数组前 $n - 1$ 个元素已排序。
5. 仅剩的一个元素必定是最大元素,无需排序,因此数组排序完成。
=== "<1>"
![选择排序步骤](selection_sort.assets/selection_sort_step1.png)
=== "<2>"
![selection_sort_step2](selection_sort.assets/selection_sort_step2.png)
=== "<3>"
![selection_sort_step3](selection_sort.assets/selection_sort_step3.png)
=== "<4>"
![selection_sort_step4](selection_sort.assets/selection_sort_step4.png)
=== "<5>"
![selection_sort_step5](selection_sort.assets/selection_sort_step5.png)
=== "<6>"
![selection_sort_step6](selection_sort.assets/selection_sort_step6.png)
=== "<7>"
![selection_sort_step7](selection_sort.assets/selection_sort_step7.png)
=== "<8>"
![selection_sort_step8](selection_sort.assets/selection_sort_step8.png)
=== "<9>"
![selection_sort_step9](selection_sort.assets/selection_sort_step9.png)
=== "<10>"
![selection_sort_step10](selection_sort.assets/selection_sort_step10.png)
=== "<11>"
![selection_sort_step11](selection_sort.assets/selection_sort_step11.png)
在代码中,我们用 $k$ 来记录未排序区间内的最小元素。
=== "Java"
```java title="selection_sort.java"
[class]{selection_sort}-[func]{selectionSort}
```
=== "C++"
```cpp title="selection_sort.cpp"
[class]{}-[func]{selectionSort}
```
=== "Python"
```python title="selection_sort.py"
[class]{}-[func]{selection_sort}
```
=== "Go"
```go title="selection_sort.go"
[class]{}-[func]{selectionSort}
```
=== "JavaScript"
```javascript title="selection_sort.js"
[class]{}-[func]{selectionSort}
```
=== "TypeScript"
```typescript title="selection_sort.ts"
[class]{}-[func]{selectionSort}
```
=== "C"
```c title="selection_sort.c"
[class]{}-[func]{selectionSort}
```
=== "C#"
```csharp title="selection_sort.cs"
[class]{selection_sort}-[func]{selectionSort}
```
=== "Swift"
```swift title="selection_sort.swift"
[class]{}-[func]{selectionSort}
```
=== "Zig"
```zig title="selection_sort.zig"
[class]{}-[func]{selectionSort}
```
## 算法特性
- **时间复杂度为 $O(n^2)$ 、非自适应排序**:共有 $n - 1$ 轮外循环,分别包含 $n$ , $n - 1$ , $\cdots$ , $2$ , $2$ 轮内循环,求和为 $\frac{(n - 1)(n + 2)}{2}$ 。
- **空间复杂度 $O(1)$ 、原地排序**:指针 $i$ , $j$ 使用常数大小的额外空间。
- **非稳定排序**:在交换元素时,有可能将 `nums[i]` 交换至其相等元素的右边,导致两者的相对顺序发生改变。
![选择排序非稳定示例](selection_sort.assets/selection_sort_step11.png)

View file

@ -181,14 +181,15 @@ nav:
- 10.5. &nbsp; 小结: chapter_searching/summary.md
- 11. &nbsp; &nbsp; 排序算法:
- 11.1. &nbsp; 排序算法: chapter_sorting/sorting_algorithm.md
- 11.2. &nbsp; 冒泡排序: chapter_sorting/bubble_sort.md
- 11.3. &nbsp; 插入排序: chapter_sorting/insertion_sort.md
- 11.4. &nbsp; 快速排序: chapter_sorting/quick_sort.md
- 11.5. &nbsp; 归并排序: chapter_sorting/merge_sort.md
- 11.6. &nbsp; 桶排序: chapter_sorting/bucket_sort.md
- 11.7. &nbsp; 计数排序: chapter_sorting/counting_sort.md
- 11.8. &nbsp; 基数排序: chapter_sorting/radix_sort.md
- 11.9. &nbsp; 小结: chapter_sorting/summary.md
- 11.2. &nbsp; 选择排序: chapter_sorting/selection_sort.md
- 11.3. &nbsp; 冒泡排序: chapter_sorting/bubble_sort.md
- 11.4. &nbsp; 插入排序: chapter_sorting/insertion_sort.md
- 11.5. &nbsp; 快速排序: chapter_sorting/quick_sort.md
- 11.6. &nbsp; 归并排序: chapter_sorting/merge_sort.md
- 11.7. &nbsp; 桶排序: chapter_sorting/bucket_sort.md
- 11.8. &nbsp; 计数排序: chapter_sorting/counting_sort.md
- 11.9. &nbsp; 基数排序: chapter_sorting/radix_sort.md
- 11.10. &nbsp; 小结: chapter_sorting/summary.md
- 12. &nbsp; &nbsp; 回溯算法:
- 12.1. &nbsp; 回溯算法New: chapter_backtracking/backtracking_algorithm.md
- 12.2. &nbsp; 全排列问题New: chapter_backtracking/permutations_problem.md