Add the section of max capacity problem. (#639)

This commit is contained in:
Yudong Jin 2023-07-21 15:16:51 +08:00 committed by GitHub
parent 8068c42688
commit 76f11ae168
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
20 changed files with 272 additions and 1 deletions

View file

@ -1,2 +1,3 @@
add_executable(coin_change_greedy coin_change_greedy.cpp)
add_executable(fractional_knapsack fractional_knapsack.cpp)
add_executable(fractional_knapsack fractional_knapsack.cpp)
add_executable(max_capacity max_capacity.cpp)

View file

@ -0,0 +1,39 @@
/**
* File: max_capacity.cpp
* Created Time: 2023-07-21
* Author: Krahets (krahets@163.com)
*/
#include "../utils/common.hpp"
/* 最大容量:贪心 */
int maxCapacity(vector<int> &ht) {
// 初始化 i, j 分列数组两端
int i = 0, j = ht.size() - 1;
// 初始最大容量为 0
int res = 0;
// 循环贪心选择,直至两板相遇
while (i < j) {
// 更新最大容量
int cap = min(ht[i], ht[j]) * (j - i);
res = max(res, cap);
// 向内移动短板
if (ht[i] < ht[j]) {
i++;
} else {
j--;
}
}
return res;
}
/* Driver Code */
int main() {
vector<int> ht = {3, 8, 5, 2, 7, 7, 3, 4};
// 贪心算法
int res = maxCapacity(ht);
cout << "最大容量为 " << res << endl;
return 0;
}

View file

@ -0,0 +1,38 @@
/**
* File: max_capacity.java
* Created Time: 2023-07-21
* Author: Krahets (krahets@163.com)
*/
package chapter_greedy;
public class max_capacity {
/* 最大容量:贪心 */
static int maxCapacity(int[] ht) {
// 初始化 i, j 分列数组两端
int i = 0, j = ht.length - 1;
// 初始最大容量为 0
int res = 0;
// 循环贪心选择直至两板相遇
while (i < j) {
// 更新最大容量
int cap = Math.min(ht[i], ht[j]) * (j - i);
res = Math.max(res, cap);
// 向内移动短板
if (ht[i] < ht[j]) {
i++;
} else {
j--;
}
}
return res;
}
public static void main(String[] args) {
int[] ht = { 3, 8, 5, 2, 7, 7, 3, 4 };
// 贪心算法
int res = maxCapacity(ht);
System.out.println("最大容量为 " + res);
}
}

View file

@ -0,0 +1,33 @@
"""
File: max_capacity.py
Created Time: 2023-07-21
Author: Krahets (krahets@163.com)
"""
def max_capacity(ht: list[int]) -> int:
"""最大容量:贪心"""
# 初始化 i, j 分列数组两端
i, j = 0, len(ht) - 1
# 初始最大容量为 0
res = 0
# 循环贪心选择,直至两板相遇
while i < j:
# 更新最大容量
cap = min(ht[i], ht[j]) * (j - i)
res = max(res, cap)
# 向内移动短板
if ht[i] < ht[j]:
i += 1
else:
j -= 1
return res
"""Driver Code"""
if __name__ == "__main__":
ht = [3, 8, 5, 2, 7, 7, 3, 4]
# 贪心算法
res = max_capacity(ht)
print(f"最大容量为 {res}")

Binary file not shown.

After

Width:  |  Height:  |  Size: 41 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 47 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 53 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 53 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 46 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 51 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 73 KiB

View file

@ -0,0 +1,158 @@
# 最大容量问题
!!! question
输入一个数组 $ht$ ,数组中的每个元素代表一个垂直隔板的高度。数组中的任意两个隔板,以及它们之间的空间可以组成一个容器。容器的容量等于高度和宽度的乘积(即面积),其中高度由较短的隔板决定,宽度是两个隔板的数组索引之差。
请在数组中选择两个隔板,使得组成的容器的容量最大,返回最大容量。
![最大容量问题的示例数据](max_capacity_problem.assets/max_capacity_example.png)
**第一步:问题分析**
容器由任意两个隔板围成,**因此本题的状态为两个隔板的索引,记为 $[i, j]$** 。
根据定义,容量等于高度乘以宽度,其中高度由短板决定,宽度是两隔板的索引之差。设容量为 $cap[i, j]$ ,可得计算公式:
$$
cap[i, j] = \min(ht[i], ht[j]) \times (j - i)
$$
设数组长度为 $n$ ,两个隔板的组合数量(即状态总数)为 $C_n^2 = \frac{n(n - 1)}{2}$ 个。最直接地,**我们可以穷举所有状态**,从而求得最大容量,时间复杂度为 $O(n^2)$ 。
**第二步:贪心策略确定**
当然,这道题还有更高效率的解法。如下图所示,现选取一个状态 $[i, j]$ ,其满足索引 $i < j$ 且高度 $ht[i] < ht[j]$ $i$ 为短板 $j$ 为长板
![初始状态](max_capacity_problem.assets/max_capacity_initial_state.png)
我们发现,**如果将长板 $j$ 向短板 $i$ 靠近,则容量一定变小**。这是因为在移动长板 $j$ 后:
- 宽度 $j-i$ 肯定变小;
- 高度由短板决定,因此高度只可能不变( $i$ 仍为短板)或变小(移动后的 $j$ 成为短板);
![向内移动长板后的状态](max_capacity_problem.assets/max_capacity_moving_long_board.png)
反向思考,**我们只有向内收缩短板 $i$ ,才有可能使容量变大**。因为虽然宽度一定变小,**但高度可能会变大**(移动后的短板 $i$ 变长了)。
![向内移动长板后的状态](max_capacity_problem.assets/max_capacity_moving_short_board.png)
由此便可推出本题的贪心策略:
1. 初始状态下,指针 $i$ , $j$ 分列与数组两端。
2. 计算当前状态的容量 $cap[i, j]$ ,并更新最大容量。
3. 比较板 $i$ 和 板 $j$ 的高度,并将短板向内移动一格。
4. 循环执行第 `2.` , `3.` 步,直至 $i$ 和 $j$ 相遇时结束。
=== "<1>"
![最大容量问题的贪心过程](max_capacity_problem.assets/max_capacity_greedy_step1.png)
=== "<2>"
![max_capacity_greedy_step2](max_capacity_problem.assets/max_capacity_greedy_step2.png)
=== "<3>"
![max_capacity_greedy_step3](max_capacity_problem.assets/max_capacity_greedy_step3.png)
=== "<4>"
![max_capacity_greedy_step4](max_capacity_problem.assets/max_capacity_greedy_step4.png)
=== "<5>"
![max_capacity_greedy_step5](max_capacity_problem.assets/max_capacity_greedy_step5.png)
=== "<6>"
![max_capacity_greedy_step6](max_capacity_problem.assets/max_capacity_greedy_step6.png)
=== "<7>"
![max_capacity_greedy_step7](max_capacity_problem.assets/max_capacity_greedy_step7.png)
=== "<8>"
![max_capacity_greedy_step8](max_capacity_problem.assets/max_capacity_greedy_step8.png)
=== "<9>"
![max_capacity_greedy_step9](max_capacity_problem.assets/max_capacity_greedy_step9.png)
代码实现如下所示。最多循环 $n$ 轮,**因此时间复杂度为 $O(n)$** 。变量 $i$ , $j$ , $res$ 使用常数大小额外空间,**因此空间复杂度为 $O(1)$** 。
=== "Java"
```java title="max_capacity.java"
[class]{max_capacity}-[func]{maxCapacity}
```
=== "C++"
```cpp title="max_capacity.cpp"
[class]{}-[func]{maxCapacity}
```
=== "Python"
```python title="max_capacity.py"
[class]{}-[func]{max_capacity}
```
=== "Go"
```go title="max_capacity.go"
[class]{}-[func]{maxCapacity}
```
=== "JavaScript"
```javascript title="max_capacity.js"
[class]{}-[func]{maxCapacity}
```
=== "TypeScript"
```typescript title="max_capacity.ts"
[class]{}-[func]{maxCapacity}
```
=== "C"
```c title="max_capacity.c"
[class]{}-[func]{maxCapacity}
```
=== "C#"
```csharp title="max_capacity.cs"
[class]{max_capacity}-[func]{maxCapacity}
```
=== "Swift"
```swift title="max_capacity.swift"
[class]{}-[func]{maxCapacity}
```
=== "Zig"
```zig title="max_capacity.zig"
[class]{}-[func]{maxCapacity}
```
=== "Dart"
```dart title="max_capacity.dart"
[class]{}-[func]{maxCapacity}
```
**第三步:正确性证明**
之所以贪心比穷举更快,是因为每轮的贪心选择都会“跳过”一些状态。
比如在状态 $cap[i, j]$ 下,$i$ 为短板、$j$ 为长板。若贪心地将短板 $i$ 向内移动一格,会导致以下状态被“跳过”,**意味着之后无法验证这些状态的容量大小**。
$$
cap[i, i+1], cap[i, i+2], \cdots, cap[i, j-2], cap[i, j-1]
$$
![移动短板导致被跳过的状态](max_capacity_problem.assets/max_capacity_skipped_states.png)
观察发现,**这些被跳过的状态实际上就是将长板 $j$ 向内移动的所有状态**。而在第二步中,我们已经证明内移长板一定会导致容量变小,也就是说这些被跳过的状态的容量一定更小。
也就是说,被跳过的状态都不可能是最优解,**跳过它们不会导致错过最优解**。
以上的分析说明,**移动短板的操作是“安全”的**,贪心策略是有效的。

View file

@ -269,6 +269,8 @@ nav:
- 15.1. &nbsp; 贪心算法: chapter_greedy/greedy_algorithm.md
# [status: new]
- 15.2. &nbsp; 分数背包问题: chapter_greedy/fractional_knapsack_problem.md
# [status: new]
- 15.3. &nbsp; 最大容量问题: chapter_greedy/max_capacity_problem.md
- 16. &nbsp; 附录:
# [icon: material/help-circle-outline]
- chapter_appendix/index.md