mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-24 09:16:28 +08:00
Fix toc for the webpage of the chapter of computational complexity (#1107)
* fix the math formula in TOC * Update space_complexity.md * Update time_complexity.md * Update space_complexity.md * Update time_complexity.md --------- Co-authored-by: Yudong Jin <krahets@163.com>
This commit is contained in:
parent
6069cb89a7
commit
739ee24751
4 changed files with 24 additions and 24 deletions
|
@ -717,7 +717,7 @@ $$
|
|||
|
||||
![Common Types of Space Complexity](space_complexity.assets/space_complexity_common_types.png)
|
||||
|
||||
### Constant Order $O(1)$
|
||||
### Constant Order $O(1)$ {data-toc-label="Constant Order"}
|
||||
|
||||
Constant order is common in constants, variables, objects that are independent of the size of input data $n$.
|
||||
|
||||
|
@ -727,7 +727,7 @@ Note that memory occupied by initializing variables or calling functions in a lo
|
|||
[file]{space_complexity}-[class]{}-[func]{constant}
|
||||
```
|
||||
|
||||
### Linear Order $O(n)$
|
||||
### Linear Order $O(n)$ {data-toc-label="Linear Order"}
|
||||
|
||||
Linear order is common in arrays, linked lists, stacks, queues, etc., where the number of elements is proportional to $n$:
|
||||
|
||||
|
@ -743,7 +743,7 @@ As shown below, this function's recursive depth is $n$, meaning there are $n$ in
|
|||
|
||||
![Recursive Function Generating Linear Order Space Complexity](space_complexity.assets/space_complexity_recursive_linear.png)
|
||||
|
||||
### Quadratic Order $O(n^2)$
|
||||
### Quadratic Order $O(n^2)$ {data-toc-label="Quadratic Order"}
|
||||
|
||||
Quadratic order is common in matrices and graphs, where the number of elements is quadratic to $n$:
|
||||
|
||||
|
@ -759,7 +759,7 @@ As shown below, the recursive depth of this function is $n$, and in each recursi
|
|||
|
||||
![Recursive Function Generating Quadratic Order Space Complexity](space_complexity.assets/space_complexity_recursive_quadratic.png)
|
||||
|
||||
### Exponential Order $O(2^n)$
|
||||
### Exponential Order $O(2^n)$ {data-toc-label="Exponential Order"}
|
||||
|
||||
Exponential order is common in binary trees. Observe the below image, a "full binary tree" with $n$ levels has $2^n - 1$ nodes, occupying $O(2^n)$ space:
|
||||
|
||||
|
@ -769,7 +769,7 @@ Exponential order is common in binary trees. Observe the below image, a "full bi
|
|||
|
||||
![Full Binary Tree Generating Exponential Order Space Complexity](space_complexity.assets/space_complexity_exponential.png)
|
||||
|
||||
### Logarithmic Order $O(\log n)$
|
||||
### Logarithmic Order $O(\log n)$ {data-toc-label="Logarithmic Order"}
|
||||
|
||||
Logarithmic order is common in divide-and-conquer algorithms. For example, in merge sort, an array of length $n$ is recursively divided in half each round, forming a recursion tree of height $\log n$, using $O(\log n)$ stack frame space.
|
||||
|
||||
|
|
|
@ -938,7 +938,7 @@ $$
|
|||
|
||||
![Common Types of Time Complexity](time_complexity.assets/time_complexity_common_types.png)
|
||||
|
||||
### Constant Order $O(1)$
|
||||
### Constant Order $O(1)$ {data-toc-label="Constant Order"}
|
||||
|
||||
Constant order means the number of operations is independent of the input data size $n$. In the following function, although the number of operations `size` might be large, the time complexity remains $O(1)$ as it's unrelated to $n$:
|
||||
|
||||
|
@ -946,7 +946,7 @@ Constant order means the number of operations is independent of the input data s
|
|||
[file]{time_complexity}-[class]{}-[func]{constant}
|
||||
```
|
||||
|
||||
### Linear Order $O(n)$
|
||||
### Linear Order $O(n)$ {data-toc-label="Linear Order"}
|
||||
|
||||
Linear order indicates the number of operations grows linearly with the input data size $n$. Linear order commonly appears in single-loop structures:
|
||||
|
||||
|
@ -962,7 +962,7 @@ Operations like array traversal and linked list traversal have a time complexity
|
|||
|
||||
It's important to note that **the input data size $n$ should be determined based on the type of input data**. For example, in the first example, $n$ represents the input data size, while in the second example, the length of the array $n$ is the data size.
|
||||
|
||||
### Quadratic Order $O(n^2)$
|
||||
### Quadratic Order $O(n^2)$ {data-toc-label="Quadratic Order"}
|
||||
|
||||
Quadratic order means the number of operations grows quadratically with the input data size $n$. Quadratic order typically appears in nested loops, where both the outer and inner loops have a time complexity of $O(n)$, resulting in an overall complexity of $O(n^2)$:
|
||||
|
||||
|
@ -980,7 +980,7 @@ For instance, in bubble sort, the outer loop runs $n - 1$ times, and the inner l
|
|||
[file]{time_complexity}-[class]{}-[func]{bubble_sort}
|
||||
```
|
||||
|
||||
### Exponential Order $O(2^n)$
|
||||
### Exponential Order $O(2^n)$ {data-toc-label="Exponential Order"}
|
||||
|
||||
Biological "cell division" is a classic example of exponential order growth: starting with one cell, it becomes two after one division, four after two divisions, and so on, resulting in $2^n$ cells after $n$ divisions.
|
||||
|
||||
|
@ -1000,7 +1000,7 @@ In practice, exponential order often appears in recursive functions. For example
|
|||
|
||||
Exponential order growth is extremely rapid and is commonly seen in exhaustive search methods (brute force, backtracking, etc.). For large-scale problems, exponential order is unacceptable, often requiring dynamic programming or greedy algorithms as solutions.
|
||||
|
||||
### Logarithmic Order $O(\log n)$
|
||||
### Logarithmic Order $O(\log n)$ {data-toc-label="Logarithmic Order"}
|
||||
|
||||
In contrast to exponential order, logarithmic order reflects situations where "the size is halved each round." Given an input data size $n$, since the size is halved each round, the number of iterations is $\log_2 n$, the inverse function of $2^n$.
|
||||
|
||||
|
@ -1030,7 +1030,7 @@ Logarithmic order is typical in algorithms based on the divide-and-conquer strat
|
|||
|
||||
This means the base $m$ can be changed without affecting the complexity. Therefore, we often omit the base $m$ and simply denote logarithmic order as $O(\log n)$.
|
||||
|
||||
### Linear-Logarithmic Order $O(n \log n)$
|
||||
### Linear-Logarithmic Order $O(n \log n)$ {data-toc-label="Linear-Logarithmic Order"}
|
||||
|
||||
Linear-logarithmic order often appears in nested loops, with the complexities of the two loops being $O(\log n)$ and $O(n)$ respectively. The related code is as follows:
|
||||
|
||||
|
@ -1044,7 +1044,7 @@ The image below demonstrates how linear-logarithmic order is generated. Each lev
|
|||
|
||||
Mainstream sorting algorithms typically have a time complexity of $O(n \log n)$, such as quicksort, mergesort, and heapsort.
|
||||
|
||||
### Factorial Order $O(n!)$
|
||||
### Factorial Order $O(n!)$ {data-toc-label="Factorial Order"}
|
||||
|
||||
Factorial order corresponds to the mathematical problem of "full permutation." Given $n$ distinct elements, the total number of possible permutations is:
|
||||
|
||||
|
|
|
@ -716,7 +716,7 @@ $$
|
|||
|
||||
![常见的空间复杂度类型](space_complexity.assets/space_complexity_common_types.png)
|
||||
|
||||
### 常数阶 $O(1)$
|
||||
### 常数阶 $O(1)$ {data-toc-label="常数阶"}
|
||||
|
||||
常数阶常见于数量与输入数据大小 $n$ 无关的常量、变量、对象。
|
||||
|
||||
|
@ -726,7 +726,7 @@ $$
|
|||
[file]{space_complexity}-[class]{}-[func]{constant}
|
||||
```
|
||||
|
||||
### 线性阶 $O(n)$
|
||||
### 线性阶 $O(n)$ {data-toc-label="线性阶"}
|
||||
|
||||
线性阶常见于元素数量与 $n$ 成正比的数组、链表、栈、队列等:
|
||||
|
||||
|
@ -742,7 +742,7 @@ $$
|
|||
|
||||
![递归函数产生的线性阶空间复杂度](space_complexity.assets/space_complexity_recursive_linear.png)
|
||||
|
||||
### 平方阶 $O(n^2)$
|
||||
### 平方阶 $O(n^2)$ {data-toc-label="平方阶"}
|
||||
|
||||
平方阶常见于矩阵和图,元素数量与 $n$ 成平方关系:
|
||||
|
||||
|
@ -758,7 +758,7 @@ $$
|
|||
|
||||
![递归函数产生的平方阶空间复杂度](space_complexity.assets/space_complexity_recursive_quadratic.png)
|
||||
|
||||
### 指数阶 $O(2^n)$
|
||||
### 指数阶 $O(2^n)$ {data-toc-label="指数阶"}
|
||||
|
||||
指数阶常见于二叉树。观察下图,层数为 $n$ 的“满二叉树”的节点数量为 $2^n - 1$ ,占用 $O(2^n)$ 空间:
|
||||
|
||||
|
@ -768,7 +768,7 @@ $$
|
|||
|
||||
![满二叉树产生的指数阶空间复杂度](space_complexity.assets/space_complexity_exponential.png)
|
||||
|
||||
### 对数阶 $O(\log n)$
|
||||
### 对数阶 $O(\log n)$ {data-toc-label="对数阶"}
|
||||
|
||||
对数阶常见于分治算法。例如归并排序,输入长度为 $n$ 的数组,每轮递归将数组从中点处划分为两半,形成高度为 $\log n$ 的递归树,使用 $O(\log n)$ 栈帧空间。
|
||||
|
||||
|
|
|
@ -940,7 +940,7 @@ $$
|
|||
|
||||
![常见的时间复杂度类型](time_complexity.assets/time_complexity_common_types.png)
|
||||
|
||||
### 常数阶 $O(1)$
|
||||
### 常数阶 $O(1)$ {data-toc-label="常数阶"}
|
||||
|
||||
常数阶的操作数量与输入数据大小 $n$ 无关,即不随着 $n$ 的变化而变化。
|
||||
|
||||
|
@ -950,7 +950,7 @@ $$
|
|||
[file]{time_complexity}-[class]{}-[func]{constant}
|
||||
```
|
||||
|
||||
### 线性阶 $O(n)$
|
||||
### 线性阶 $O(n)$ {data-toc-label="线性阶"}
|
||||
|
||||
线性阶的操作数量相对于输入数据大小 $n$ 以线性级别增长。线性阶通常出现在单层循环中:
|
||||
|
||||
|
@ -966,7 +966,7 @@ $$
|
|||
|
||||
值得注意的是,**输入数据大小 $n$ 需根据输入数据的类型来具体确定**。比如在第一个示例中,变量 $n$ 为输入数据大小;在第二个示例中,数组长度 $n$ 为数据大小。
|
||||
|
||||
### 平方阶 $O(n^2)$
|
||||
### 平方阶 $O(n^2)$ {data-toc-label="平方阶"}
|
||||
|
||||
平方阶的操作数量相对于输入数据大小 $n$ 以平方级别增长。平方阶通常出现在嵌套循环中,外层循环和内层循环的时间复杂度都为 $O(n)$ ,因此总体的时间复杂度为 $O(n^2)$ :
|
||||
|
||||
|
@ -984,7 +984,7 @@ $$
|
|||
[file]{time_complexity}-[class]{}-[func]{bubble_sort}
|
||||
```
|
||||
|
||||
### 指数阶 $O(2^n)$
|
||||
### 指数阶 $O(2^n)$ {data-toc-label="指数阶"}
|
||||
|
||||
生物学的“细胞分裂”是指数阶增长的典型例子:初始状态为 $1$ 个细胞,分裂一轮后变为 $2$ 个,分裂两轮后变为 $4$ 个,以此类推,分裂 $n$ 轮后有 $2^n$ 个细胞。
|
||||
|
||||
|
@ -1004,7 +1004,7 @@ $$
|
|||
|
||||
指数阶增长非常迅速,在穷举法(暴力搜索、回溯等)中比较常见。对于数据规模较大的问题,指数阶是不可接受的,通常需要使用动态规划或贪心算法等来解决。
|
||||
|
||||
### 对数阶 $O(\log n)$
|
||||
### 对数阶 $O(\log n)$ {data-toc-label="对数阶"}
|
||||
|
||||
与指数阶相反,对数阶反映了“每轮缩减到一半”的情况。设输入数据大小为 $n$ ,由于每轮缩减到一半,因此循环次数是 $\log_2 n$ ,即 $2^n$ 的反函数。
|
||||
|
||||
|
@ -1034,7 +1034,7 @@ $$
|
|||
|
||||
也就是说,底数 $m$ 可以在不影响复杂度的前提下转换。因此我们通常会省略底数 $m$ ,将对数阶直接记为 $O(\log n)$ 。
|
||||
|
||||
### 线性对数阶 $O(n \log n)$
|
||||
### 线性对数阶 $O(n \log n)$ {data-toc-label="线性对数阶"}
|
||||
|
||||
线性对数阶常出现于嵌套循环中,两层循环的时间复杂度分别为 $O(\log n)$ 和 $O(n)$ 。相关代码如下:
|
||||
|
||||
|
@ -1048,7 +1048,7 @@ $$
|
|||
|
||||
主流排序算法的时间复杂度通常为 $O(n \log n)$ ,例如快速排序、归并排序、堆排序等。
|
||||
|
||||
### 阶乘阶 $O(n!)$
|
||||
### 阶乘阶 $O(n!)$ {data-toc-label="阶乘阶"}
|
||||
|
||||
阶乘阶对应数学上的“全排列”问题。给定 $n$ 个互不重复的元素,求其所有可能的排列方案,方案数量为:
|
||||
|
||||
|
|
Loading…
Reference in a new issue