diff --git a/.prettierrc b/.prettierrc new file mode 100644 index 000000000..5a938ce18 --- /dev/null +++ b/.prettierrc @@ -0,0 +1,4 @@ +{ + "tabWidth": 4, + "useTabs": false +} diff --git a/codes/javascript/chapter_computational_complexity/time_complexity.js b/codes/javascript/chapter_computational_complexity/time_complexity.js index 4cd6705bf..c8809caa0 100644 --- a/codes/javascript/chapter_computational_complexity/time_complexity.js +++ b/codes/javascript/chapter_computational_complexity/time_complexity.js @@ -6,116 +6,116 @@ /* 常数阶 */ function constant(n) { - let count = 0; - const size = 100000; - for (let i = 0; i < size; i++) count++; - return count; + let count = 0; + const size = 100000; + for (let i = 0; i < size; i++) count++; + return count; } /* 线性阶 */ function linear(n) { - let count = 0; - for (let i = 0; i < n; i++) count++; - return count; + let count = 0; + for (let i = 0; i < n; i++) count++; + return count; } /* 线性阶(遍历数组) */ function arrayTraversal(nums) { - let count = 0; - // 循环次数与数组长度成正比 - for (let i = 0; i < nums.length; i++) { - count++; - } - return count; + let count = 0; + // 循环次数与数组长度成正比 + for (let i = 0; i < nums.length; i++) { + count++; + } + return count; } /* 平方阶 */ function quadratic(n) { - let count = 0; - // 循环次数与数组长度成平方关系 - for (let i = 0; i < n; i++) { - for (let j = 0; j < n; j++) { - count++; - } - } - return count; + let count = 0; + // 循环次数与数组长度成平方关系 + for (let i = 0; i < n; i++) { + for (let j = 0; j < n; j++) { + count++; + } + } + return count; } /* 平方阶(冒泡排序) */ function bubbleSort(nums) { - let count = 0; // 计数器 - // 外循环:待排序元素数量为 n-1, n-2, ..., 1 - for (let i = nums.length - 1; i > 0; i--) { - // 内循环:冒泡操作 - for (let j = 0; j < i; j++) { - if (nums[j] > nums[j + 1]) { - // 交换 nums[j] 与 nums[j + 1] - let tmp = nums[j]; - nums[j] = nums[j + 1]; - nums[j + 1] = tmp; - count += 3; // 元素交换包含 3 个单元操作 - } - } - } - return count; + let count = 0; // 计数器 + // 外循环:待排序元素数量为 n-1, n-2, ..., 1 + for (let i = nums.length - 1; i > 0; i--) { + // 内循环:冒泡操作 + for (let j = 0; j < i; j++) { + if (nums[j] > nums[j + 1]) { + // 交换 nums[j] 与 nums[j + 1] + let tmp = nums[j]; + nums[j] = nums[j + 1]; + nums[j + 1] = tmp; + count += 3; // 元素交换包含 3 个单元操作 + } + } + } + return count; } /* 指数阶(循环实现) */ function exponential(n) { - let count = 0, - base = 1; - // cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1) - for (let i = 0; i < n; i++) { - for (let j = 0; j < base; j++) { - count++; - } - base *= 2; - } - // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 - return count; + let count = 0, + base = 1; + // cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1) + for (let i = 0; i < n; i++) { + for (let j = 0; j < base; j++) { + count++; + } + base *= 2; + } + // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 + return count; } /* 指数阶(递归实现) */ function expRecur(n) { - if (n == 1) return 1; - return expRecur(n - 1) + expRecur(n - 1) + 1; + if (n == 1) return 1; + return expRecur(n - 1) + expRecur(n - 1) + 1; } /* 对数阶(循环实现) */ function logarithmic(n) { - let count = 0; - while (n > 1) { - n = n / 2; - count++; - } - return count; + let count = 0; + while (n > 1) { + n = n / 2; + count++; + } + return count; } /* 对数阶(递归实现) */ function logRecur(n) { - if (n <= 1) return 0; - return logRecur(n / 2) + 1; + if (n <= 1) return 0; + return logRecur(n / 2) + 1; } /* 线性对数阶 */ function linearLogRecur(n) { - if (n <= 1) return 1; - let count = linearLogRecur(n / 2) + linearLogRecur(n / 2); - for (let i = 0; i < n; i++) { - count++; - } - return count; + if (n <= 1) return 1; + let count = linearLogRecur(n / 2) + linearLogRecur(n / 2); + for (let i = 0; i < n; i++) { + count++; + } + return count; } /* 阶乘阶(递归实现) */ function factorialRecur(n) { - if (n == 0) return 1; - let count = 0; - // 从 1 个分裂出 n 个 - for (let i = 0; i < n; i++) { - count += factorialRecur(n - 1); - } - return count; + if (n == 0) return 1; + let count = 0; + // 从 1 个分裂出 n 个 + for (let i = 0; i < n; i++) { + count += factorialRecur(n - 1); + } + return count; } const n = 8; diff --git a/codes/typescript/chapter_computational_complexity/time_complexity.ts b/codes/typescript/chapter_computational_complexity/time_complexity.ts index 0b1b5be4c..900585c81 100644 --- a/codes/typescript/chapter_computational_complexity/time_complexity.ts +++ b/codes/typescript/chapter_computational_complexity/time_complexity.ts @@ -6,116 +6,116 @@ /* 常数阶 */ function constant(n: number): number { - let count = 0; - const size = 100000; - for (let i = 0; i < size; i++) count++; - return count; + let count = 0; + const size = 100000; + for (let i = 0; i < size; i++) count++; + return count; } /* 线性阶 */ function linear(n: number): number { - let count = 0; - for (let i = 0; i < n; i++) count++; - return count; + let count = 0; + for (let i = 0; i < n; i++) count++; + return count; } /* 线性阶(遍历数组) */ function arrayTraversal(nums: number[]) { - let count = 0; - // 循环次数与数组长度成正比 - for (let i = 0; i < nums.length; i++) { - count++; - } - return count; + let count = 0; + // 循环次数与数组长度成正比 + for (let i = 0; i < nums.length; i++) { + count++; + } + return count; } /* 平方阶 */ function quadratic(n: number): number { - let count = 0; - // 循环次数与数组长度成平方关系 - for (let i = 0; i < n; i++) { - for (let j = 0; j < n; j++) { - count++; - } - } - return count; + let count = 0; + // 循环次数与数组长度成平方关系 + for (let i = 0; i < n; i++) { + for (let j = 0; j < n; j++) { + count++; + } + } + return count; } /* 平方阶(冒泡排序) */ function bubbleSort(nums: number[]): number { - let count = 0; // 计数器 - // 外循环:待排序元素数量为 n-1, n-2, ..., 1 - for (let i = nums.length - 1; i > 0; i--) { - // 内循环:冒泡操作 - for (let j = 0; j < i; j++) { - if (nums[j] > nums[j + 1]) { - // 交换 nums[j] 与 nums[j + 1] - let tmp = nums[j]; - nums[j] = nums[j + 1]; - nums[j + 1] = tmp; - count += 3; // 元素交换包含 3 个单元操作 - } - } - } - return count; + let count = 0; // 计数器 + // 外循环:待排序元素数量为 n-1, n-2, ..., 1 + for (let i = nums.length - 1; i > 0; i--) { + // 内循环:冒泡操作 + for (let j = 0; j < i; j++) { + if (nums[j] > nums[j + 1]) { + // 交换 nums[j] 与 nums[j + 1] + let tmp = nums[j]; + nums[j] = nums[j + 1]; + nums[j + 1] = tmp; + count += 3; // 元素交换包含 3 个单元操作 + } + } + } + return count; } /* 指数阶(循环实现) */ function exponential(n: number): number { - let count = 0, - base = 1; - // cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1) - for (let i = 0; i < n; i++) { - for (let j = 0; j < base; j++) { - count++; - } - base *= 2; - } - // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 - return count; + let count = 0, + base = 1; + // cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1) + for (let i = 0; i < n; i++) { + for (let j = 0; j < base; j++) { + count++; + } + base *= 2; + } + // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 + return count; } /* 指数阶(递归实现) */ function expRecur(n: number): number { - if (n == 1) return 1; - return expRecur(n - 1) + expRecur(n - 1) + 1; + if (n == 1) return 1; + return expRecur(n - 1) + expRecur(n - 1) + 1; } /* 对数阶(循环实现) */ function logarithmic(n: number): number { - let count = 0; - while (n > 1) { - n = n / 2; - count++; - } - return count; + let count = 0; + while (n > 1) { + n = n / 2; + count++; + } + return count; } /* 对数阶(递归实现) */ function logRecur(n: number): number { - if (n <= 1) return 0; - return logRecur(n / 2) + 1; + if (n <= 1) return 0; + return logRecur(n / 2) + 1; } /* 线性对数阶 */ function linearLogRecur(n: number): number { - if (n <= 1) return 1; - let count = linearLogRecur(n / 2) + linearLogRecur(n / 2); - for (let i = 0; i < n; i++) { - count++; - } - return count; + if (n <= 1) return 1; + let count = linearLogRecur(n / 2) + linearLogRecur(n / 2); + for (let i = 0; i < n; i++) { + count++; + } + return count; } /* 阶乘阶(递归实现) */ function factorialRecur(n: number): number { - if (n == 0) return 1; - let count = 0; - // 从 1 个分裂出 n 个 - for (let i = 0; i < n; i++) { - count += factorialRecur(n - 1); - } - return count; + if (n == 0) return 1; + let count = 0; + // 从 1 个分裂出 n 个 + for (let i = 0; i < n; i++) { + count += factorialRecur(n - 1); + } + return count; } var n = 8;