mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-25 01:56:30 +08:00
Update AVL Tree.
This commit is contained in:
parent
2a2c0b74e8
commit
5e9a5524d4
3 changed files with 283 additions and 271 deletions
|
@ -4,12 +4,12 @@
|
|||
* Author: Krahets (krahets@163.com)
|
||||
*/
|
||||
|
||||
package chapter_tree;
|
||||
package chapter_tree;
|
||||
|
||||
import include.*;
|
||||
import include.*;
|
||||
|
||||
// Tree class
|
||||
class AVLTree {
|
||||
// Tree class
|
||||
class AVLTree {
|
||||
TreeNode root; // 根节点
|
||||
|
||||
/* 获取结点高度 */
|
||||
|
@ -20,13 +20,15 @@
|
|||
|
||||
/* 更新结点高度 */
|
||||
private void updateHeight(TreeNode node) {
|
||||
// 结点高度等于最高子树高度 + 1
|
||||
node.height = Math.max(height(node.left), height(node.right)) + 1;
|
||||
}
|
||||
|
||||
/* 获取平衡因子 */
|
||||
public int balanceFactor(TreeNode node) {
|
||||
if (node == null)
|
||||
return 0;
|
||||
// 空结点平衡因子为 0
|
||||
if (node == null) return 0;
|
||||
// 结点平衡因子 = 左子树高度 - 右子树高度
|
||||
return height(node.left) - height(node.right);
|
||||
}
|
||||
|
||||
|
@ -34,10 +36,13 @@
|
|||
private TreeNode rightRotate(TreeNode node) {
|
||||
TreeNode child = node.left;
|
||||
TreeNode grandChild = child.right;
|
||||
// 以 child 为原点,将 node 向右旋转
|
||||
child.right = node;
|
||||
node.left = grandChild;
|
||||
// 更新结点高度
|
||||
updateHeight(node);
|
||||
updateHeight(child);
|
||||
// 返回旋转后子树的根节点
|
||||
return child;
|
||||
}
|
||||
|
||||
|
@ -45,17 +50,21 @@
|
|||
private TreeNode leftRotate(TreeNode node) {
|
||||
TreeNode child = node.right;
|
||||
TreeNode grandChild = child.left;
|
||||
// 以 child 为原点,将 node 向左旋转
|
||||
child.left = node;
|
||||
node.right = grandChild;
|
||||
// 更新结点高度
|
||||
updateHeight(node);
|
||||
updateHeight(child);
|
||||
// 返回旋转后子树的根节点
|
||||
return child;
|
||||
}
|
||||
|
||||
/* 执行旋转操作,使该子树重新恢复平衡 */
|
||||
private TreeNode rotate(TreeNode node) {
|
||||
// 获取结点 node 的平衡因子
|
||||
int balanceFactor = balanceFactor(node);
|
||||
// 根据失衡情况分为四种操作:右旋、左旋、先左后右、先右后左
|
||||
// 左偏树
|
||||
if (balanceFactor > 1) {
|
||||
if (balanceFactor(node.left) >= 0) {
|
||||
// 右旋
|
||||
|
@ -66,6 +75,7 @@
|
|||
return rightRotate(node);
|
||||
}
|
||||
}
|
||||
// 右偏树
|
||||
if (balanceFactor < -1) {
|
||||
if (balanceFactor(node.right) <= 0) {
|
||||
// 左旋
|
||||
|
@ -76,6 +86,7 @@
|
|||
return leftRotate(node);
|
||||
}
|
||||
}
|
||||
// 平衡树,无需旋转,直接返回
|
||||
return node;
|
||||
}
|
||||
|
||||
|
@ -85,22 +96,20 @@
|
|||
return root;
|
||||
}
|
||||
|
||||
/* 递归插入结点 */
|
||||
/* 递归插入结点(辅助函数) */
|
||||
private TreeNode insertHelper(TreeNode node, int val) {
|
||||
// 1. 查找插入位置,并插入结点
|
||||
if (node == null)
|
||||
return new TreeNode(val);
|
||||
if (node == null) return new TreeNode(val);
|
||||
/* 1. 查找插入位置,并插入结点 */
|
||||
if (val < node.val)
|
||||
node.left = insertHelper(node.left, val);
|
||||
else if (val > node.val)
|
||||
node.right = insertHelper(node.right, val);
|
||||
else
|
||||
return node; // 重复结点则直接返回
|
||||
// 2. 更新结点高度
|
||||
updateHeight(node);
|
||||
// 3. 执行旋转操作,使该子树重新恢复平衡
|
||||
return node; // 重复结点不插入,直接返回
|
||||
updateHeight(node); // 更新结点高度
|
||||
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
|
||||
node = rotate(node);
|
||||
// 返回该子树的根节点
|
||||
// 返回子树的根节点
|
||||
return node;
|
||||
}
|
||||
|
||||
|
@ -110,11 +119,10 @@
|
|||
return root;
|
||||
}
|
||||
|
||||
/* 递归删除结点 */
|
||||
/* 递归删除结点(辅助函数) */
|
||||
private TreeNode removeHelper(TreeNode node, int val) {
|
||||
// 1. 查找结点,并删除之
|
||||
if (node == null)
|
||||
return null;
|
||||
if (node == null) return null;
|
||||
/* 1. 查找结点,并删除之 */
|
||||
if (val < node.val)
|
||||
node.left = removeHelper(node.left, val);
|
||||
else if (val > node.val)
|
||||
|
@ -135,11 +143,10 @@
|
|||
node.val = temp.val;
|
||||
}
|
||||
}
|
||||
// 2. 更新结点高度
|
||||
updateHeight(node);
|
||||
// 3. 执行旋转操作,使该子树重新恢复平衡
|
||||
updateHeight(node); // 更新结点高度
|
||||
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
|
||||
node = rotate(node);
|
||||
// 返回该子树的根节点
|
||||
// 返回子树的根节点
|
||||
return node;
|
||||
}
|
||||
|
||||
|
@ -159,19 +166,21 @@
|
|||
// 循环查找,越过叶结点后跳出
|
||||
while (cur != null) {
|
||||
// 目标结点在 root 的右子树中
|
||||
if (cur.val < val) cur = cur.right;
|
||||
if (cur.val < val)
|
||||
cur = cur.right;
|
||||
// 目标结点在 root 的左子树中
|
||||
else if (cur.val > val) cur = cur.left;
|
||||
else if (cur.val > val)
|
||||
cur = cur.left;
|
||||
// 找到目标结点,跳出循环
|
||||
else break;
|
||||
else
|
||||
break;
|
||||
}
|
||||
// 返回目标结点
|
||||
return cur;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
public class avl_tree {
|
||||
public class avl_tree {
|
||||
static void testInsert(AVLTree tree, int val) {
|
||||
tree.insert(val);
|
||||
System.out.println("\n插入结点 " + val + " 后,AVL 树为");
|
||||
|
@ -214,5 +223,4 @@
|
|||
TreeNode node = avlTree.search(7);
|
||||
System.out.println("\n查找到的结点对象为 " + node + ",结点值 = " + node.val);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -1,4 +1,8 @@
|
|||
# AVL 树
|
||||
---
|
||||
comments: true
|
||||
---
|
||||
|
||||
# AVL 树 *
|
||||
|
||||
在「二叉搜索树」章节中提到,在进行多次插入与删除操作后,二叉搜索树可能会退化为链表。此时所有操作的时间复杂度都会由 $O(\log n)$ 劣化至 $O(n)$ 。
|
||||
|
||||
|
@ -237,7 +241,7 @@ AVL 树的独特之处在于「旋转 Rotation」的操作,其可 **在不影
|
|||
// 更新结点高度
|
||||
updateHeight(node);
|
||||
updateHeight(child);
|
||||
// 返回旋转后的根节点
|
||||
// 返回旋转后子树的根节点
|
||||
return child;
|
||||
}
|
||||
```
|
||||
|
@ -303,7 +307,7 @@ AVL 树的独特之处在于「旋转 Rotation」的操作,其可 **在不影
|
|||
// 更新结点高度
|
||||
updateHeight(node);
|
||||
updateHeight(child);
|
||||
// 返回旋转后的根节点
|
||||
// 返回旋转后子树的根节点
|
||||
return child;
|
||||
}
|
||||
```
|
||||
|
|
|
@ -154,7 +154,7 @@ nav:
|
|||
- 二叉树(Binary Tree): chapter_tree/binary_tree.md
|
||||
- 二叉树常见类型: chapter_tree/binary_tree_types.md
|
||||
- 二叉搜索树: chapter_tree/binary_search_tree.md
|
||||
- AVL 树: chapter_tree/avl_tree.md
|
||||
- AVL 树 *: chapter_tree/avl_tree.md
|
||||
- 小结: chapter_tree/summary.md
|
||||
- 查找算法:
|
||||
- 线性查找: chapter_searching/linear_search.md
|
||||
|
|
Loading…
Reference in a new issue