mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-25 01:16:31 +08:00
Seperate the build_heap from the heap.
This commit is contained in:
parent
23cda5e225
commit
5b44ff5397
3 changed files with 120 additions and 108 deletions
119
docs/chapter_heap/build_heap.md
Normal file
119
docs/chapter_heap/build_heap.md
Normal file
|
@ -0,0 +1,119 @@
|
|||
# 建堆操作 *
|
||||
|
||||
如果我们想要根据输入列表来生成一个堆,这样的操作被称为「建堆」。
|
||||
|
||||
## 两种建堆方法
|
||||
|
||||
### 借助入堆方法实现
|
||||
|
||||
最直接地,考虑借助「元素入堆」方法,先建立一个空堆,**再将列表元素依次入堆即可**。
|
||||
|
||||
### 基于堆化操作实现
|
||||
|
||||
然而,**存在一种更加高效的建堆方法**。设结点数量为 $n$ ,我们先将列表所有元素原封不动添加进堆,**然后迭代地对各个结点执行「从顶至底堆化」**。当然,**无需对叶结点执行堆化**,因为其没有子结点。
|
||||
|
||||
=== "Java"
|
||||
|
||||
```java title="my_heap.java"
|
||||
[class]{MaxHeap}-[func]{MaxHeap}
|
||||
```
|
||||
|
||||
=== "C++"
|
||||
|
||||
```cpp title="my_heap.cpp"
|
||||
[class]{MaxHeap}-[func]{MaxHeap}
|
||||
```
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python title="my_heap.py"
|
||||
[class]{MaxHeap}-[func]{__init__}
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
||||
```go title="my_heap.go"
|
||||
[class]{maxHeap}-[func]{newMaxHeap}
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
|
||||
```javascript title="my_heap.js"
|
||||
[class]{MaxHeap}-[func]{constructor}
|
||||
```
|
||||
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript title="my_heap.ts"
|
||||
[class]{MaxHeap}-[func]{constructor}
|
||||
```
|
||||
|
||||
=== "C"
|
||||
|
||||
```c title="my_heap.c"
|
||||
[class]{maxHeap}-[func]{newMaxHeap}
|
||||
```
|
||||
|
||||
=== "C#"
|
||||
|
||||
```csharp title="my_heap.cs"
|
||||
[class]{MaxHeap}-[func]{MaxHeap}
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
||||
```swift title="my_heap.swift"
|
||||
[class]{MaxHeap}-[func]{init}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
||||
```zig title="my_heap.zig"
|
||||
[class]{MaxHeap}-[func]{init}
|
||||
```
|
||||
|
||||
## 复杂度分析
|
||||
|
||||
对于第一种建堆方法,元素入堆的时间复杂度为 $O(\log n)$ ,而平均长度为 $\frac{n}{2}$ ,因此该方法的总体时间复杂度为 $O(n \log n)$ 。
|
||||
|
||||
那么,第二种建堆方法的时间复杂度是多少呢?我们来展开推算一下。
|
||||
|
||||
- 完全二叉树中,设结点总数为 $n$ ,则叶结点数量为 $(n + 1) / 2$ ,其中 $/$ 为向下整除。因此在排除叶结点后,需要堆化结点数量为 $(n - 1)/2$ ,即为 $O(n)$ ;
|
||||
- 从顶至底堆化中,每个结点最多堆化至叶结点,因此最大迭代次数为二叉树高度 $O(\log n)$ ;
|
||||
|
||||
将上述两者相乘,可得时间复杂度为 $O(n \log n)$ 。然而,该估算结果仍不够准确,因为我们没有考虑到 **二叉树底层结点远多于顶层结点** 的性质。
|
||||
|
||||
下面我们来尝试展开计算。为了减小计算难度,我们假设树是一个「完美二叉树」,该假设不会影响计算结果的正确性。设二叉树(即堆)结点数量为 $n$ ,树高度为 $h$ 。上文提到,**结点堆化最大迭代次数等于该结点到叶结点的距离,而这正是“结点高度”**。因此,我们将各层的“结点数量 $\times$ 结点高度”求和,即可得到所有结点的堆化的迭代次数总和。
|
||||
|
||||
$$
|
||||
T(h) = 2^0h + 2^1(h-1) + 2^2(h-2) + \cdots + 2^{(h-1)}\times1
|
||||
$$
|
||||
|
||||
![完美二叉树的各层结点数量](heap.assets/heapify_operations_count.png)
|
||||
|
||||
化简上式需要借助中学的数列知识,先对 $T(h)$ 乘以 $2$ ,易得
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
T(h) & = 2^0h + 2^1(h-1) + 2^2(h-2) + \cdots + 2^{h-1}\times1 \newline
|
||||
2 T(h) & = 2^1h + 2^2(h-1) + 2^3(h-2) + \cdots + 2^{h}\times1 \newline
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
**使用错位相减法**,令下式 $2 T(h)$ 减去上式 $T(h)$ ,可得
|
||||
|
||||
$$
|
||||
2T(h) - T(h) = T(h) = -2^0h + 2^1 + 2^2 + \cdots + 2^{h-1} + 2^h
|
||||
$$
|
||||
|
||||
观察上式,$T(h)$ 是一个等比数列,可直接使用求和公式,得到时间复杂度为
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
T(h) & = 2 \frac{1 - 2^h}{1 - 2} - h \newline
|
||||
& = 2^{h+1} - h \newline
|
||||
& = O(2^h)
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
进一步地,高度为 $h$ 的完美二叉树的结点数量为 $n = 2^{h+1} - 1$ ,易得复杂度为 $O(2^h) = O(n)$。以上推算表明,**输入列表并建堆的时间复杂度为 $O(n)$ ,非常高效**。
|
|
@ -708,114 +708,6 @@
|
|||
[class]{MaxHeap}-[func]{siftDown}
|
||||
```
|
||||
|
||||
### 输入数据并建堆 *
|
||||
|
||||
如果我们想要直接输入一个列表并将其建堆,那么该怎么做呢?最直接地,考虑使用「元素入堆」方法,将列表元素依次入堆。元素入堆的时间复杂度为 $O(\log n)$ ,而平均长度为 $\frac{n}{2}$ ,因此该方法的总体时间复杂度为 $O(n \log n)$ 。
|
||||
|
||||
然而,存在一种更加优雅的建堆方法。设结点数量为 $n$ ,我们先将列表所有元素原封不动添加进堆,**然后迭代地对各个结点执行「从顶至底堆化」**。当然,**无需对叶结点执行堆化**,因为其没有子结点。
|
||||
|
||||
=== "Java"
|
||||
|
||||
```java title="my_heap.java"
|
||||
[class]{MaxHeap}-[func]{MaxHeap}
|
||||
```
|
||||
|
||||
=== "C++"
|
||||
|
||||
```cpp title="my_heap.cpp"
|
||||
[class]{MaxHeap}-[func]{MaxHeap}
|
||||
```
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python title="my_heap.py"
|
||||
[class]{MaxHeap}-[func]{__init__}
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
||||
```go title="my_heap.go"
|
||||
[class]{maxHeap}-[func]{newMaxHeap}
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
|
||||
```javascript title="my_heap.js"
|
||||
[class]{MaxHeap}-[func]{constructor}
|
||||
```
|
||||
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript title="my_heap.ts"
|
||||
[class]{MaxHeap}-[func]{constructor}
|
||||
```
|
||||
|
||||
=== "C"
|
||||
|
||||
```c title="my_heap.c"
|
||||
[class]{maxHeap}-[func]{newMaxHeap}
|
||||
```
|
||||
|
||||
=== "C#"
|
||||
|
||||
```csharp title="my_heap.cs"
|
||||
[class]{MaxHeap}-[func]{MaxHeap}
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
||||
```swift title="my_heap.swift"
|
||||
[class]{MaxHeap}-[func]{init}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
||||
```zig title="my_heap.zig"
|
||||
[class]{MaxHeap}-[func]{init}
|
||||
```
|
||||
|
||||
那么,第二种建堆方法的时间复杂度时多少呢?我们来做一下简单推算。
|
||||
|
||||
- 完全二叉树中,设结点总数为 $n$ ,则叶结点数量为 $(n + 1) / 2$ ,其中 $/$ 为向下整除。因此在排除叶结点后,需要堆化结点数量为 $(n - 1)/2$ ,即为 $O(n)$ ;
|
||||
- 从顶至底堆化中,每个结点最多堆化至叶结点,因此最大迭代次数为二叉树高度 $O(\log n)$ ;
|
||||
|
||||
将上述两者相乘,可得时间复杂度为 $O(n \log n)$ 。然而,该估算结果仍不够准确,因为我们没有考虑到 **二叉树底层结点远多于顶层结点** 的性质。
|
||||
|
||||
下面我们来尝试展开计算。为了减小计算难度,我们假设树是一个「完美二叉树」,该假设不会影响计算结果的正确性。设二叉树(即堆)结点数量为 $n$ ,树高度为 $h$ 。上文提到,**结点堆化最大迭代次数等于该结点到叶结点的距离,而这正是“结点高度”**。因此,我们将各层的“结点数量 $\times$ 结点高度”求和,即可得到所有结点的堆化的迭代次数总和。
|
||||
|
||||
$$
|
||||
T(h) = 2^0h + 2^1(h-1) + 2^2(h-2) + \cdots + 2^{(h-1)}\times1
|
||||
$$
|
||||
|
||||
![完美二叉树的各层结点数量](heap.assets/heapify_operations_count.png)
|
||||
|
||||
化简上式需要借助中学的数列知识,先对 $T(h)$ 乘以 $2$ ,易得
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
T(h) & = 2^0h + 2^1(h-1) + 2^2(h-2) + \cdots + 2^{h-1}\times1 \newline
|
||||
2 T(h) & = 2^1h + 2^2(h-1) + 2^3(h-2) + \cdots + 2^{h}\times1 \newline
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
**使用错位相减法**,令下式 $2 T(h)$ 减去上式 $T(h)$ ,可得
|
||||
|
||||
$$
|
||||
2T(h) - T(h) = T(h) = -2^0h + 2^1 + 2^2 + \cdots + 2^{h-1} + 2^h
|
||||
$$
|
||||
|
||||
观察上式,$T(h)$ 是一个等比数列,可直接使用求和公式,得到时间复杂度为
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
T(h) & = 2 \frac{1 - 2^h}{1 - 2} - h \newline
|
||||
& = 2^{h+1} - h \newline
|
||||
& = O(2^h)
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
进一步地,高度为 $h$ 的完美二叉树的结点数量为 $n = 2^{h+1} - 1$ ,易得复杂度为 $O(2^h) = O(n)$。以上推算表明,**输入列表并建堆的时间复杂度为 $O(n)$ ,非常高效**。
|
||||
|
||||
## 堆常见应用
|
||||
|
||||
- **优先队列**。堆常作为实现优先队列的首选数据结构,入队和出队操作时间复杂度为 $O(\log n)$ ,建队操作为 $O(n)$ ,皆非常高效。
|
||||
|
|
|
@ -164,6 +164,7 @@ nav:
|
|||
- 7.5. 小结: chapter_tree/summary.md
|
||||
- 8. 堆:
|
||||
- 8.1. 堆(Heap): chapter_heap/heap.md
|
||||
- 8.2. 建堆操作 *: chapter_heap/build_heap.md
|
||||
- 9. 图:
|
||||
- 9.1. 图(Graph): chapter_graph/graph.md
|
||||
- 9.2. 图基础操作: chapter_graph/graph_operations.md
|
||||
|
|
Loading…
Reference in a new issue