mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-25 01:06:30 +08:00
Sync zh and zh-hant versions.
This commit is contained in:
parent
94ea62e1e8
commit
41e3c00b61
3 changed files with 14 additions and 4 deletions
|
@ -71,6 +71,16 @@
|
|||
|
||||
另一方面,必要使用鏈結串列的情況主要是二元樹和圖。堆疊和佇列往往會使用程式語言提供的 `stack` 和 `queue` ,而非鏈結串列。
|
||||
|
||||
**Q**:初始化串列 `res = [0] * self.size()` 操作,會導致 `res` 的每個元素引用相同的位址嗎?
|
||||
**Q**:操作 `res = [[0]] * n` 生成了一個二維串列,其中每一個 `[0]` 都是獨立的嗎?
|
||||
|
||||
不會。但二維陣列會有這個問題,例如初始化二維串列 `res = [[0]] * self.size()` ,則多次引用了同一個串列 `[0]` 。
|
||||
不是獨立的。此二維串列中,所有的 `[0]` 實際上是同一個物件的引用。如果我們修改其中一個元素,會發現所有的對應元素都會隨之改變。
|
||||
|
||||
如果希望二維串列中的每個 `[0]` 都是獨立的,可以使用 `res = [[0] for _ in range(n)]` 來實現。這種方式的原理是初始化了 $n$ 個獨立的 `[0]` 串列物件。
|
||||
|
||||
**Q**:操作 `res = [0] * n` 生成了一個串列,其中每一個整數 0 都是獨立的嗎?
|
||||
|
||||
在該串列中,所有整數 0 都是同一個物件的引用。這是因為 Python 對小整數(通常是 -5 到 256)採用了快取池機制,以便最大化物件複用,從而提升效能。
|
||||
|
||||
雖然它們指向同一個物件,但我們仍然可以獨立修改串列中的每個元素,這是因為 Python 的整數是“不可變物件”。當我們修改某個元素時,實際上是切換為另一個物件的引用,而不是改變原有物件本身。
|
||||
|
||||
然而,當串列元素是“可變物件”時(例如串列、字典或類別例項等),修改某個元素會直接改變該物件本身,所有引用該物件的元素都會產生相同變化。
|
||||
|
|
|
@ -5,7 +5,7 @@
|
|||
- 整理撲克的過程與插入排序演算法非常類似。插入排序演算法適合排序小型資料集。
|
||||
- 貨幣找零的步驟本質上是貪婪演算法,每一步都採取當前看來最好的選擇。
|
||||
- 演算法是在有限時間內解決特定問題的一組指令或操作步驟,而資料結構是計算機中組織和儲存資料的方式。
|
||||
- 資料結構與演算法緊密相連。資料結構是演算法的基石,而演算法是資料結構發揮作用的舞臺。
|
||||
- 資料結構與演算法緊密相連。資料結構是演算法的基石,而演算法為資料結構注入生命力。
|
||||
- 我們可以將資料結構與演算法類比為拼裝積木,積木代表資料,積木的形狀和連線方式等代表資料結構,拼裝積木的步驟則對應演算法。
|
||||
|
||||
### Q & A
|
||||
|
|
|
@ -26,7 +26,7 @@
|
|||
如下圖所示,資料結構與演算法高度相關、緊密結合,具體表現在以下三個方面。
|
||||
|
||||
- 資料結構是演算法的基石。資料結構為演算法提供了結構化儲存的資料,以及操作資料的方法。
|
||||
- 演算法是資料結構發揮作用的舞臺。資料結構本身僅儲存資料資訊,結合演算法才能解決特定問題。
|
||||
- 演算法為資料結構注入生命力。資料結構本身僅儲存資料資訊,結合演算法才能解決特定問題。
|
||||
- 演算法通常可以基於不同的資料結構實現,但執行效率可能相差很大,選擇合適的資料結構是關鍵。
|
||||
|
||||
![資料結構與演算法的關係](what_is_dsa.assets/relationship_between_data_structure_and_algorithm.png)
|
||||
|
|
Loading…
Reference in a new issue