mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-24 10:36:29 +08:00
Add the section of iteration and recursion. (#693)
This commit is contained in:
parent
f524b957d4
commit
3e64f68ae9
15 changed files with 1013 additions and 3 deletions
|
@ -1,3 +1,5 @@
|
|||
add_executable(iteration iteration.cpp)
|
||||
add_executable(recursion recursion.cpp)
|
||||
add_executable(space_complexity space_complexity.cpp)
|
||||
add_executable(time_complexity time_complexity.cpp)
|
||||
add_executable(worst_best_time_complexity worst_best_time_complexity.cpp)
|
76
codes/cpp/chapter_computational_complexity/iteration.cpp
Normal file
76
codes/cpp/chapter_computational_complexity/iteration.cpp
Normal file
|
@ -0,0 +1,76 @@
|
|||
/**
|
||||
* File: iteration.cpp
|
||||
* Created Time: 2023-08-24
|
||||
* Author: Krahets (krahets@163.com)
|
||||
*/
|
||||
|
||||
#include "../utils/common.hpp"
|
||||
|
||||
/* for 循环 */
|
||||
int forLoop(int n) {
|
||||
int res = 0;
|
||||
// 循环求和 1, 2, ..., n-1, n
|
||||
for (int i = 1; i <= n; ++i) {
|
||||
res += i;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
/* while 循环 */
|
||||
int whileLoop(int n) {
|
||||
int res = 0;
|
||||
int i = 1; // 初始化条件变量
|
||||
// 循环求和 1, 2, ..., n-1, n
|
||||
while (i <= n) {
|
||||
res += i;
|
||||
i += 1; // 更新条件变量
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
/* while 循环(两次更新) */
|
||||
int whileLoopII(int n) {
|
||||
int res = 0;
|
||||
int i = 1; // 初始化条件变量
|
||||
// 循环求和 1, 2, 4, 5...
|
||||
while (i <= n) {
|
||||
res += i;
|
||||
i += 1; // 更新条件变量
|
||||
res += i;
|
||||
i *= 2; // 更新条件变量
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
/* 双层 for 循环 */
|
||||
string nestedForLoop(int n) {
|
||||
ostringstream res;
|
||||
// 循环 i = 1, 2, ..., n-1, n
|
||||
for (int i = 1; i <= n; ++i) {
|
||||
// 循环 j = 1, 2, ..., n-1, n
|
||||
for (int j = 1; j <= n; ++j) {
|
||||
res << "(" << i << ", " << j << "), ";
|
||||
}
|
||||
}
|
||||
return res.str();
|
||||
}
|
||||
|
||||
/* Driver Code */
|
||||
int main() {
|
||||
int n = 5;
|
||||
int res;
|
||||
|
||||
res = forLoop(n);
|
||||
cout << "\nfor 循环的求和结果 res = " << res << endl;
|
||||
|
||||
res = whileLoop(n);
|
||||
cout << "\nwhile 循环的求和结果 res = " << res << endl;
|
||||
|
||||
res = whileLoopII(n);
|
||||
cout << "\nwhile 循环(两次更新)求和结果 res = " << res << endl;
|
||||
|
||||
string resStr = nestedForLoop(n);
|
||||
cout << "\n双层 for 循环的遍历结果 " << resStr << endl;
|
||||
|
||||
return 0;
|
||||
}
|
55
codes/cpp/chapter_computational_complexity/recursion.cpp
Normal file
55
codes/cpp/chapter_computational_complexity/recursion.cpp
Normal file
|
@ -0,0 +1,55 @@
|
|||
/**
|
||||
* File: recursion.cpp
|
||||
* Created Time: 2023-08-24
|
||||
* Author: Krahets (krahets@163.com)
|
||||
*/
|
||||
|
||||
#include "../utils/common.hpp"
|
||||
|
||||
/* 递归 */
|
||||
int recur(int n) {
|
||||
// 终止条件
|
||||
if (n == 1)
|
||||
return 1;
|
||||
// 递:递归调用
|
||||
int res = recur(n - 1);
|
||||
// 归:返回结果
|
||||
return n + res;
|
||||
}
|
||||
|
||||
/* 尾递归 */
|
||||
int tailRecur(int n, int res) {
|
||||
// 终止条件
|
||||
if (n == 0)
|
||||
return res;
|
||||
// 尾递归调用
|
||||
return tailRecur(n - 1, res + n);
|
||||
}
|
||||
|
||||
/* 斐波那契数列:递归 */
|
||||
int fib(int n) {
|
||||
// 终止条件 f(1) = 0, f(2) = 1
|
||||
if (n == 1 || n == 2)
|
||||
return n - 1;
|
||||
// 递归调用 f(n) = f(n-1) + f(n-2)
|
||||
int res = fib(n - 1) + fib(n - 2);
|
||||
// 返回结果 f(n)
|
||||
return res;
|
||||
}
|
||||
|
||||
/* Driver Code */
|
||||
int main() {
|
||||
int n = 5;
|
||||
int res;
|
||||
|
||||
res = recur(n);
|
||||
cout << "\n递归函数的求和结果 res = " << res << endl;
|
||||
|
||||
res = tailRecur(n, 0);
|
||||
cout << "\n尾递归函数的求和结果 res = " << res << endl;
|
||||
|
||||
res = fib(n);
|
||||
cout << "\n斐波那契数列的第 " << n << " 项为 " << res << endl;
|
||||
|
||||
return 0;
|
||||
}
|
76
codes/java/chapter_computational_complexity/iteration.java
Normal file
76
codes/java/chapter_computational_complexity/iteration.java
Normal file
|
@ -0,0 +1,76 @@
|
|||
/**
|
||||
* File: iteration.java
|
||||
* Created Time: 2023-08-24
|
||||
* Author: Krahets (krahets@163.com)
|
||||
*/
|
||||
|
||||
package chapter_computational_complexity;
|
||||
|
||||
public class iteration {
|
||||
/* for 循环 */
|
||||
public static int forLoop(int n) {
|
||||
int res = 0;
|
||||
// 循环求和 1, 2, ..., n-1, n
|
||||
for (int i = 1; i <= n; i++) {
|
||||
res += i;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
/* while 循环 */
|
||||
public static int whileLoop(int n) {
|
||||
int res = 0;
|
||||
int i = 1; // 初始化条件变量
|
||||
// 循环求和 1, 2, ..., n-1, n
|
||||
while (i <= n) {
|
||||
res += i;
|
||||
i += 1; // 更新条件变量
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
/* while 循环(两次更新) */
|
||||
public static int whileLoopII(int n) {
|
||||
int res = 0;
|
||||
int i = 1; // 初始化条件变量
|
||||
// 循环求和 1, 2, 4, 5...
|
||||
while (i <= n) {
|
||||
res += i;
|
||||
i += 1; // 更新条件变量
|
||||
res += i;
|
||||
i *= 2; // 更新条件变量
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
/* 双层 for 循环 */
|
||||
public static String nestedForLoop(int n) {
|
||||
StringBuilder res = new StringBuilder();
|
||||
// 循环 i = 1, 2, ..., n-1, n
|
||||
for (int i = 1; i <= n; i++) {
|
||||
// 循环 j = 1, 2, ..., n-1, n
|
||||
for (int j = 1; j <= n; j++) {
|
||||
res.append("(" + i + ", " + j + "), ");
|
||||
}
|
||||
}
|
||||
return res.toString();
|
||||
}
|
||||
|
||||
/* Driver Code */
|
||||
public static void main(String[] args) {
|
||||
int n = 5;
|
||||
int res;
|
||||
|
||||
res = forLoop(n);
|
||||
System.out.println("\nfor 循环的求和结果 res = " + res);
|
||||
|
||||
res = whileLoop(n);
|
||||
System.out.println("\nwhile 循环的求和结果 res = " + res);
|
||||
|
||||
res = whileLoopII(n);
|
||||
System.out.println("\nwhile 循环(两次更新)求和结果 res = " + res);
|
||||
|
||||
String resStr = nestedForLoop(n);
|
||||
System.out.println("\n双层 for 循环的遍历结果 " + resStr);
|
||||
}
|
||||
}
|
55
codes/java/chapter_computational_complexity/recursion.java
Normal file
55
codes/java/chapter_computational_complexity/recursion.java
Normal file
|
@ -0,0 +1,55 @@
|
|||
/**
|
||||
* File: recursion.java
|
||||
* Created Time: 2023-08-24
|
||||
* Author: Krahets (krahets@163.com)
|
||||
*/
|
||||
|
||||
package chapter_computational_complexity;
|
||||
|
||||
public class recursion {
|
||||
/* 递归 */
|
||||
public static int recur(int n) {
|
||||
// 终止条件
|
||||
if (n == 1)
|
||||
return 1;
|
||||
// 递:递归调用
|
||||
int res = recur(n - 1);
|
||||
// 归:返回结果
|
||||
return n + res;
|
||||
}
|
||||
|
||||
/* 尾递归 */
|
||||
public static int tailRecur(int n, int res) {
|
||||
// 终止条件
|
||||
if (n == 0)
|
||||
return res;
|
||||
// 尾递归调用
|
||||
return tailRecur(n - 1, res + n);
|
||||
}
|
||||
|
||||
/* 斐波那契数列:递归 */
|
||||
public static int fib(int n) {
|
||||
// 终止条件 f(1) = 0, f(2) = 1
|
||||
if (n == 1 || n == 2)
|
||||
return n - 1;
|
||||
// 递归调用 f(n) = f(n-1) + f(n-2)
|
||||
int res = fib(n - 1) + fib(n - 2);
|
||||
// 返回结果 f(n)
|
||||
return res;
|
||||
}
|
||||
|
||||
/* Driver Code */
|
||||
public static void main(String[] args) {
|
||||
int n = 5;
|
||||
int res;
|
||||
|
||||
res = recur(n);
|
||||
System.out.println("\n递归函数的求和结果 res = " + res);
|
||||
|
||||
res = tailRecur(n, 0);
|
||||
System.out.println("\n尾递归函数的求和结果 res = " + res);
|
||||
|
||||
res = fib(n);
|
||||
System.out.println("\n斐波那契数列的第 " + n + " 项为 " + res);
|
||||
}
|
||||
}
|
65
codes/python/chapter_computational_complexity/iteration.py
Normal file
65
codes/python/chapter_computational_complexity/iteration.py
Normal file
|
@ -0,0 +1,65 @@
|
|||
"""
|
||||
File: iteration.py
|
||||
Created Time: 2023-08-24
|
||||
Author: Krahets (krahets@163.com)
|
||||
"""
|
||||
|
||||
|
||||
def for_loop(n: int) -> int:
|
||||
"""for 循环"""
|
||||
res = 0
|
||||
# 循环求和 1, 2, ..., n-1, n
|
||||
for i in range(1, n + 1):
|
||||
res += i
|
||||
return res
|
||||
|
||||
|
||||
def while_loop(n: int) -> int:
|
||||
"""while 循环"""
|
||||
res = 0
|
||||
i = 1 # 初始化条件变量
|
||||
# 循环求和 1, 2, ..., n-1, n
|
||||
while i <= n:
|
||||
res += i
|
||||
i += 1 # 更新条件变量
|
||||
return res
|
||||
|
||||
|
||||
def while_loop_ii(n: int) -> int:
|
||||
"""while 循环(两次更新)"""
|
||||
res = 0
|
||||
i = 1 # 初始化条件变量
|
||||
# 循环求和 1, 2, 4, 5...
|
||||
while i <= n:
|
||||
res += i
|
||||
i += 1 # 更新条件变量
|
||||
res += i
|
||||
i *= 2 # 更新条件变量
|
||||
return res
|
||||
|
||||
|
||||
def nested_for_loop(n: int) -> str:
|
||||
"""双层 for 循环"""
|
||||
res = ""
|
||||
# 循环 i = 1, 2, ..., n-1, n
|
||||
for i in range(1, n + 1):
|
||||
# 循环 j = 1, 2, ..., n-1, n
|
||||
for j in range(1, n + 1):
|
||||
res += f"({i}, {j}), "
|
||||
return res
|
||||
|
||||
|
||||
"""Driver Code"""
|
||||
if __name__ == "__main__":
|
||||
n = 5
|
||||
res = for_loop(n)
|
||||
print(f"\nfor 循环的求和结果 res = {res}")
|
||||
|
||||
res = while_loop(n)
|
||||
print(f"\nwhile 循环的求和结果 res = {res}")
|
||||
|
||||
res = while_loop_ii(n)
|
||||
print(f"\nwhile 循环(两次更新)求和结果 res = {res}")
|
||||
|
||||
res = nested_for_loop(n)
|
||||
print(f"\n双层 for 循环的遍历结果 {res}")
|
49
codes/python/chapter_computational_complexity/recursion.py
Normal file
49
codes/python/chapter_computational_complexity/recursion.py
Normal file
|
@ -0,0 +1,49 @@
|
|||
"""
|
||||
File: recursion.py
|
||||
Created Time: 2023-08-24
|
||||
Author: Krahets (krahets@163.com)
|
||||
"""
|
||||
|
||||
|
||||
def recur(n: int) -> int:
|
||||
"""递归"""
|
||||
# 终止条件
|
||||
if n == 1:
|
||||
return 1
|
||||
# 递:递归调用
|
||||
res = recur(n - 1)
|
||||
# 归:返回结果
|
||||
return n + res
|
||||
|
||||
|
||||
def tail_recur(n, res):
|
||||
"""尾递归"""
|
||||
# 终止条件
|
||||
if n == 0:
|
||||
return res
|
||||
# 尾递归调用
|
||||
return tail_recur(n - 1, res + n)
|
||||
|
||||
|
||||
def fib(n: int) -> int:
|
||||
"""斐波那契数列:递归"""
|
||||
# 终止条件 f(1) = 0, f(2) = 1
|
||||
if n == 1 or n == 2:
|
||||
return n - 1
|
||||
# 递归调用 f(n) = f(n-1) + f(n-2)
|
||||
res = fib(n - 1) + fib(n - 2)
|
||||
# 返回结果 f(n)
|
||||
return res
|
||||
|
||||
|
||||
"""Driver Code"""
|
||||
if __name__ == "__main__":
|
||||
n = 5
|
||||
res = recur(n)
|
||||
print(f"\n递归函数的求和结果 res = {res}")
|
||||
|
||||
res = tail_recur(n, 0)
|
||||
print(f"\n尾递归函数的求和结果 res = {res}")
|
||||
|
||||
res = fib(n)
|
||||
print(f"\n斐波那契数列的第 {n} 项为 {res}")
|
Binary file not shown.
After Width: | Height: | Size: 38 KiB |
Binary file not shown.
After Width: | Height: | Size: 44 KiB |
Binary file not shown.
After Width: | Height: | Size: 73 KiB |
Binary file not shown.
After Width: | Height: | Size: 73 KiB |
Binary file not shown.
After Width: | Height: | Size: 54 KiB |
Binary file not shown.
After Width: | Height: | Size: 83 KiB |
631
docs/chapter_computational_complexity/iteration_and_recursion.md
Normal file
631
docs/chapter_computational_complexity/iteration_and_recursion.md
Normal file
|
@ -0,0 +1,631 @@
|
|||
# 迭代与递归
|
||||
|
||||
在数据结构与算法中,重复执行某个任务是很常见的,其与算法的复杂度密切相关。而要重复执行某个任务,我们通常会选用两种基本的程序结构:迭代和递归。
|
||||
|
||||
## 迭代
|
||||
|
||||
「迭代 iteration」是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某段代码,直到这个条件不再满足。
|
||||
|
||||
### for 循环
|
||||
|
||||
`for` 循环是最常见的迭代形式之一,**适合预先知道迭代次数时使用**。
|
||||
|
||||
以下函数基于 `for` 循环实现了求和 $1 + 2 + \dots + n$ ,求和结果使用变量 `res` 记录。需要注意的是,Python 中 `range(a, b)` 对应的区间是“左闭右开”的,对应的遍历范围为 $a, a + 1, \dots, b-1$ 。
|
||||
|
||||
=== "Java"
|
||||
|
||||
```java title="iteration.java"
|
||||
[class]{iteration}-[func]{forLoop}
|
||||
```
|
||||
|
||||
=== "C++"
|
||||
|
||||
```cpp title="iteration.cpp"
|
||||
[class]{}-[func]{forLoop}
|
||||
```
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python title="iteration.py"
|
||||
[class]{}-[func]{for_loop}
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
||||
```go title="iteration.go"
|
||||
[class]{}-[func]{forLoop}
|
||||
```
|
||||
|
||||
=== "JS"
|
||||
|
||||
```javascript title="iteration.js"
|
||||
[class]{}-[func]{forLoop}
|
||||
```
|
||||
|
||||
=== "TS"
|
||||
|
||||
```typescript title="iteration.ts"
|
||||
[class]{}-[func]{forLoop}
|
||||
```
|
||||
|
||||
=== "C"
|
||||
|
||||
```c title="iteration.c"
|
||||
[class]{}-[func]{forLoop}
|
||||
```
|
||||
|
||||
=== "C#"
|
||||
|
||||
```csharp title="iteration.cs"
|
||||
[class]{iteration}-[func]{forLoop}
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
||||
```swift title="iteration.swift"
|
||||
[class]{}-[func]{forLoop}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
||||
```zig title="iteration.zig"
|
||||
[class]{}-[func]{forLoop}
|
||||
```
|
||||
|
||||
=== "Dart"
|
||||
|
||||
```dart title="iteration.dart"
|
||||
[class]{}-[func]{forLoop}
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust title="iteration.rs"
|
||||
[class]{}-[func]{for_loop}
|
||||
```
|
||||
|
||||
下图展示了该求和函数的流程框图。
|
||||
|
||||
![求和函数的流程框图](iteration_and_recursion.assets/iteration.png)
|
||||
|
||||
此求和函数的操作数量与输入数据大小 $n$ 成正比,或者说成“线性关系”。实际上,**时间复杂度描述的就是这个“线性关系”**。相关内容将会在下一节中详细介绍。
|
||||
|
||||
### while 循环
|
||||
|
||||
与 `for` 循环类似,`while` 循环也是一种实现迭代的方法。在 `while` 循环中,程序每轮都会先检查条件,如果条件为真则继续执行,否则就结束循环。
|
||||
|
||||
下面,我们用 `while` 循环来实现求和 $1 + 2 + \dots + n$ 。
|
||||
|
||||
=== "Java"
|
||||
|
||||
```java title="iteration.java"
|
||||
[class]{iteration}-[func]{whileLoop}
|
||||
```
|
||||
|
||||
=== "C++"
|
||||
|
||||
```cpp title="iteration.cpp"
|
||||
[class]{}-[func]{whileLoop}
|
||||
```
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python title="iteration.py"
|
||||
[class]{}-[func]{while_loop}
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
||||
```go title="iteration.go"
|
||||
[class]{}-[func]{whileLoop}
|
||||
```
|
||||
|
||||
=== "JS"
|
||||
|
||||
```javascript title="iteration.js"
|
||||
[class]{}-[func]{whileLoop}
|
||||
```
|
||||
|
||||
=== "TS"
|
||||
|
||||
```typescript title="iteration.ts"
|
||||
[class]{}-[func]{whileLoop}
|
||||
```
|
||||
|
||||
=== "C"
|
||||
|
||||
```c title="iteration.c"
|
||||
[class]{}-[func]{whileLoop}
|
||||
```
|
||||
|
||||
=== "C#"
|
||||
|
||||
```csharp title="iteration.cs"
|
||||
[class]{iteration}-[func]{whileLoop}
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
||||
```swift title="iteration.swift"
|
||||
[class]{}-[func]{whileLoop}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
||||
```zig title="iteration.zig"
|
||||
[class]{}-[func]{whileLoop}
|
||||
```
|
||||
|
||||
=== "Dart"
|
||||
|
||||
```dart title="iteration.dart"
|
||||
[class]{}-[func]{whileLoop}
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust title="iteration.rs"
|
||||
[class]{}-[func]{while_loop}
|
||||
```
|
||||
|
||||
在 `while` 循环中,由于初始化和更新条件变量的步骤是独立在循环结构之外的,**因此它比 `for` 循环的自由度更高**。
|
||||
|
||||
例如在以下代码中,条件变量 $i$ 每轮进行了两次更新,这种情况就不太方便用 `for` 循环实现。
|
||||
|
||||
=== "Java"
|
||||
|
||||
```java title="iteration.java"
|
||||
[class]{iteration}-[func]{whileLoopII}
|
||||
```
|
||||
|
||||
=== "C++"
|
||||
|
||||
```cpp title="iteration.cpp"
|
||||
[class]{}-[func]{whileLoopII}
|
||||
```
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python title="iteration.py"
|
||||
[class]{}-[func]{while_loop_ii}
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
||||
```go title="iteration.go"
|
||||
[class]{}-[func]{whileLoopII}
|
||||
```
|
||||
|
||||
=== "JS"
|
||||
|
||||
```javascript title="iteration.js"
|
||||
[class]{}-[func]{whileLoopII}
|
||||
```
|
||||
|
||||
=== "TS"
|
||||
|
||||
```typescript title="iteration.ts"
|
||||
[class]{}-[func]{whileLoopII}
|
||||
```
|
||||
|
||||
=== "C"
|
||||
|
||||
```c title="iteration.c"
|
||||
[class]{}-[func]{whileLoopII}
|
||||
```
|
||||
|
||||
=== "C#"
|
||||
|
||||
```csharp title="iteration.cs"
|
||||
[class]{iteration}-[func]{whileLoopII}
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
||||
```swift title="iteration.swift"
|
||||
[class]{}-[func]{whileLoopII}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
||||
```zig title="iteration.zig"
|
||||
[class]{}-[func]{whileLoopII}
|
||||
```
|
||||
|
||||
=== "Dart"
|
||||
|
||||
```dart title="iteration.dart"
|
||||
[class]{}-[func]{whileLoopII}
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust title="iteration.rs"
|
||||
[class]{}-[func]{while_loop_ii}
|
||||
```
|
||||
|
||||
总的来说,**`for` 循环的代码更加紧凑,`while` 循环更加灵活**,两者都可以实现迭代结构。选择使用哪一个应该根据特定问题的需求来决定。
|
||||
|
||||
### 嵌套循环
|
||||
|
||||
我们可以在一个循环结构内嵌套另一个循环结构,以 `for` 循环为例:
|
||||
|
||||
=== "Java"
|
||||
|
||||
```java title="iteration.java"
|
||||
[class]{iteration}-[func]{nestedForLoop}
|
||||
```
|
||||
|
||||
=== "C++"
|
||||
|
||||
```cpp title="iteration.cpp"
|
||||
[class]{}-[func]{nestedForLoop}
|
||||
```
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python title="iteration.py"
|
||||
[class]{}-[func]{nested_for_loop}
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
||||
```go title="iteration.go"
|
||||
[class]{}-[func]{nestedForLoop}
|
||||
```
|
||||
|
||||
=== "JS"
|
||||
|
||||
```javascript title="iteration.js"
|
||||
[class]{}-[func]{nestedForLoop}
|
||||
```
|
||||
|
||||
=== "TS"
|
||||
|
||||
```typescript title="iteration.ts"
|
||||
[class]{}-[func]{nestedForLoop}
|
||||
```
|
||||
|
||||
=== "C"
|
||||
|
||||
```c title="iteration.c"
|
||||
[class]{}-[func]{nestedForLoop}
|
||||
```
|
||||
|
||||
=== "C#"
|
||||
|
||||
```csharp title="iteration.cs"
|
||||
[class]{iteration}-[func]{nestedForLoop}
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
||||
```swift title="iteration.swift"
|
||||
[class]{}-[func]{nestedForLoop}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
||||
```zig title="iteration.zig"
|
||||
[class]{}-[func]{nestedForLoop}
|
||||
```
|
||||
|
||||
=== "Dart"
|
||||
|
||||
```dart title="iteration.dart"
|
||||
[class]{}-[func]{nestedForLoop}
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust title="iteration.rs"
|
||||
[class]{}-[func]{nested_for_loop}
|
||||
```
|
||||
|
||||
下图给出了该嵌套循环的流程框图。
|
||||
|
||||
![嵌套循环的流程框图](iteration_and_recursion.assets/nested_iteration.png)
|
||||
|
||||
在这种情况下,函数的操作数量与 $n^2$ 成正比,或者说算法运行时间和输入数据大小 $n$ 成“平方关系”。
|
||||
|
||||
我们可以继续添加嵌套循环,每一次嵌套都是一次“升维”,将会使时间复杂度提高至“立方关系”、“四次方关系”、以此类推。
|
||||
|
||||
## 递归
|
||||
|
||||
「递归 recursion」是一种算法策略,通过函数调用自身来解决问题。它主要包含两个阶段。
|
||||
|
||||
1. **递**:程序不断深入地调用自身,通常传入更小或更简化的参数,直到达到“终止条件”。
|
||||
2. **归**:触发“终止条件”后,程序从最深层的递归函数开始逐层返回,汇聚每一层的结果。
|
||||
|
||||
而从实现的角度看,递归代码主要包含三个要素。
|
||||
|
||||
1. **终止条件**:用于决定什么时候由“递”转“归”。
|
||||
2. **递归调用**:对应“递”,函数调用自身,通常输入更小或更简化的参数。
|
||||
3. **返回结果**:对应“归”,将当前递归层级的结果返回至上一层。
|
||||
|
||||
观察以下代码,我们只需调用函数 `recur(n)` ,就可以完成 $1 + 2 + \dots + n$ 的计算:
|
||||
|
||||
=== "Java"
|
||||
|
||||
```java title="recursion.java"
|
||||
[class]{recursion}-[func]{recur}
|
||||
```
|
||||
|
||||
=== "C++"
|
||||
|
||||
```cpp title="recursion.cpp"
|
||||
[class]{}-[func]{recur}
|
||||
```
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python title="recursion.py"
|
||||
[class]{}-[func]{recur}
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
||||
```go title="recursion.go"
|
||||
[class]{}-[func]{recur}
|
||||
```
|
||||
|
||||
=== "JS"
|
||||
|
||||
```javascript title="recursion.js"
|
||||
[class]{}-[func]{recur}
|
||||
```
|
||||
|
||||
=== "TS"
|
||||
|
||||
```typescript title="recursion.ts"
|
||||
[class]{}-[func]{recur}
|
||||
```
|
||||
|
||||
=== "C"
|
||||
|
||||
```c title="recursion.c"
|
||||
[class]{}-[func]{recur}
|
||||
```
|
||||
|
||||
=== "C#"
|
||||
|
||||
```csharp title="recursion.cs"
|
||||
[class]{recursion}-[func]{recur}
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
||||
```swift title="recursion.swift"
|
||||
[class]{}-[func]{recur}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
||||
```zig title="recursion.zig"
|
||||
[class]{}-[func]{recur}
|
||||
```
|
||||
|
||||
=== "Dart"
|
||||
|
||||
```dart title="recursion.dart"
|
||||
[class]{}-[func]{recur}
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust title="recursion.rs"
|
||||
[class]{}-[func]{recur}
|
||||
```
|
||||
|
||||
下图展示了该函数的递归过程。
|
||||
|
||||
![求和函数的递归过程](iteration_and_recursion.assets/recursion_sum.png)
|
||||
|
||||
虽然从计算角度看,迭代与递归可以得到相同的结果,**但它们代表了两种完全不同的思考和解决问题的范式**。
|
||||
|
||||
- **迭代**:“自下而上”地解决问题。从最基础的步骤开始,然后不断重复或累加这些步骤,直到任务完成。
|
||||
- **递归**:“自上而下”地解决问题。将原问题分解为更小的子问题,这些子问题和原问题具有相同的形式。接下来将子问题继续分解为更小的子问题,直到基本情况时停止(基本情况的解是已知的)。
|
||||
|
||||
以上述的求和函数为例,设问题 $f(n) = 1 + 2 + \dots + n$ 。
|
||||
|
||||
- **迭代**:在循环中模拟求和过程,从 $1$ 遍历到 $n$ ,每轮执行求和操作,即可求得 $f(n)$ 。
|
||||
- **递归**:将问题分解为子问题 $f(n) = n + f(n-1)$ ,不断(递归地)分解下去,直至基本情况 $f(0) = 0$ 时终止。
|
||||
|
||||
### 调用栈
|
||||
|
||||
递归函数每次调用自身时,系统都会为新开启的函数分配内存,以存储局部变量、调用地址和其他信息等。这将导致两方面的结果。
|
||||
|
||||
- 函数的上下文数据都存储在称为“栈帧空间”的内存区域中,直至函数返回后才会被释放。因此,**递归通常比迭代更加耗费内存空间**。
|
||||
- 递归调用函数会产生额外的开销。**因此递归通常比循环的时间效率更低**。
|
||||
|
||||
如下图所示,在触发终止条件前,同时存在 $n$ 个未返回的递归函数,**递归深度为 $n$** 。
|
||||
|
||||
![递归调用深度](iteration_and_recursion.assets/recursion_sum_depth.png)
|
||||
|
||||
在实际中,编程语言允许的递归深度通常是有限的,过深的递归可能导致栈溢出报错。
|
||||
|
||||
### 尾递归
|
||||
|
||||
有趣的是,**如果函数在返回前的最后一步才进行递归调用**,则该函数可以被编译器或解释器优化,使其在空间效率上与迭代相当。这种情况被称为「尾递归 tail recursion」。
|
||||
|
||||
- **普通递归**:当函数返回到上一层级的函数后,需要继续执行代码,因此系统需要保存上一层调用的上下文。
|
||||
- **尾递归**:递归调用是函数返回前的最后一个操作,这意味着函数返回到上一层级后,无需继续执行其他操作,因此系统无需保存上一层函数的上下文。
|
||||
|
||||
以计算 $1 + 2 + \dots + n$ 为例,我们可以将结果变量 `res` 设为函数参数,从而实现尾递归。
|
||||
|
||||
=== "Java"
|
||||
|
||||
```java title="recursion.java"
|
||||
[class]{recursion}-[func]{tailRecur}
|
||||
```
|
||||
|
||||
=== "C++"
|
||||
|
||||
```cpp title="recursion.cpp"
|
||||
[class]{}-[func]{tailRecur}
|
||||
```
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python title="recursion.py"
|
||||
[class]{}-[func]{tail_recur}
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
||||
```go title="recursion.go"
|
||||
[class]{}-[func]{tailRecur}
|
||||
```
|
||||
|
||||
=== "JS"
|
||||
|
||||
```javascript title="recursion.js"
|
||||
[class]{}-[func]{tailRecur}
|
||||
```
|
||||
|
||||
=== "TS"
|
||||
|
||||
```typescript title="recursion.ts"
|
||||
[class]{}-[func]{tailRecur}
|
||||
```
|
||||
|
||||
=== "C"
|
||||
|
||||
```c title="recursion.c"
|
||||
[class]{}-[func]{tailRecur}
|
||||
```
|
||||
|
||||
=== "C#"
|
||||
|
||||
```csharp title="recursion.cs"
|
||||
[class]{recursion}-[func]{tailRecur}
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
||||
```swift title="recursion.swift"
|
||||
[class]{}-[func]{tailRecur}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
||||
```zig title="recursion.zig"
|
||||
[class]{}-[func]{tailRecur}
|
||||
```
|
||||
|
||||
=== "Dart"
|
||||
|
||||
```dart title="recursion.dart"
|
||||
[class]{}-[func]{tailRecur}
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust title="recursion.rs"
|
||||
[class]{}-[func]{tail_recur}
|
||||
```
|
||||
|
||||
两种递归的过程对比如下图所示。
|
||||
|
||||
- **普通递归**:求和操作是在“归”的过程中执行的,每层返回后都要再执行一次求和操作。
|
||||
- **尾递归**:求和操作是在“递”的过程中执行的,“归”的过程只需层层返回。
|
||||
|
||||
![尾递归过程](iteration_and_recursion.assets/tail_recursion_sum.png)
|
||||
|
||||
请注意,许多编译器或解释器并不支持尾递归优化。例如,Python 默认不支持尾递归优化,因此即使函数是尾递归形式,但仍然可能会遇到栈溢出问题。
|
||||
|
||||
### 递归树
|
||||
|
||||
当处理与“分治”相关的算法问题时,递归往往比迭代的思路更加直观、代码更加易读。以“斐波那契数列”为例。
|
||||
|
||||
!!! question
|
||||
|
||||
给定一个斐波那契数列 $0, 1, 1, 2, 3, 5, 8, 13, \dots$ ,求该数列的第 $n$ 个数字。
|
||||
|
||||
设斐波那契数列的第 $n$ 个数字为 $f(n)$ ,易得两个结论。
|
||||
|
||||
- 数列的前两个数字为 $f(1) = 0$ 和 $f(2) = 1$ 。
|
||||
- 数列中的每个数字是前两个数字的和,即 $f(n) = f(n - 1) + f(n - 2)$ 。
|
||||
|
||||
按照递推关系进行递归调用,将前两个数字作为终止条件,便可写出递归代码。调用 `fib(n)` 即可得到斐波那契数列的第 $n$ 个数字。
|
||||
|
||||
=== "Java"
|
||||
|
||||
```java title="recursion.java"
|
||||
[class]{recursion}-[func]{fib}
|
||||
```
|
||||
|
||||
=== "C++"
|
||||
|
||||
```cpp title="recursion.cpp"
|
||||
[class]{}-[func]{fib}
|
||||
```
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python title="recursion.py"
|
||||
[class]{}-[func]{fib}
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
||||
```go title="recursion.go"
|
||||
[class]{}-[func]{fib}
|
||||
```
|
||||
|
||||
=== "JS"
|
||||
|
||||
```javascript title="recursion.js"
|
||||
[class]{}-[func]{fib}
|
||||
```
|
||||
|
||||
=== "TS"
|
||||
|
||||
```typescript title="recursion.ts"
|
||||
[class]{}-[func]{fib}
|
||||
```
|
||||
|
||||
=== "C"
|
||||
|
||||
```c title="recursion.c"
|
||||
[class]{}-[func]{fib}
|
||||
```
|
||||
|
||||
=== "C#"
|
||||
|
||||
```csharp title="recursion.cs"
|
||||
[class]{recursion}-[func]{fib}
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
||||
```swift title="recursion.swift"
|
||||
[class]{}-[func]{fib}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
||||
```zig title="recursion.zig"
|
||||
[class]{}-[func]{fib}
|
||||
```
|
||||
|
||||
=== "Dart"
|
||||
|
||||
```dart title="recursion.dart"
|
||||
[class]{}-[func]{fib}
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust title="recursion.rs"
|
||||
[class]{}-[func]{fib}
|
||||
```
|
||||
|
||||
观察以上代码,我们在函数内递归调用了两个函数,**这意味着从一个调用产生了两个调用分支**。如下图所示,这样不断递归调用下去,最终将产生一个层数为 $n$ 的「递归树 recursion tree」。
|
||||
|
||||
![斐波那契数列的递归树](iteration_and_recursion.assets/recursion_tree.png)
|
||||
|
||||
本质上看,递归体现“将问题分解为更小子问题”的思维范式,这种分治策略是至关重要的。
|
||||
|
||||
- 从算法角度看,搜索、排序、回溯、分治、动态规划等许多重要算法策略都直接或间接地应用这种思维方式。
|
||||
- 从数据结构角度看,递归天然适合处理链表、树和图的相关问题,因为它们非常适合用分治思想进行分析。
|
|
@ -148,9 +148,10 @@ nav:
|
|||
# [icon: material/timer-sand]
|
||||
- chapter_computational_complexity/index.md
|
||||
- 2.1 算法效率评估: chapter_computational_complexity/performance_evaluation.md
|
||||
- 2.2 时间复杂度: chapter_computational_complexity/time_complexity.md
|
||||
- 2.3 空间复杂度: chapter_computational_complexity/space_complexity.md
|
||||
- 2.4 小结: chapter_computational_complexity/summary.md
|
||||
- 2.2 迭代与递归: chapter_computational_complexity/iteration_and_recursion.md
|
||||
- 2.3 时间复杂度: chapter_computational_complexity/time_complexity.md
|
||||
- 2.4 空间复杂度: chapter_computational_complexity/space_complexity.md
|
||||
- 2.5 小结: chapter_computational_complexity/summary.md
|
||||
- 第 3 章 数据结构:
|
||||
# [icon: material/shape-outline]
|
||||
- chapter_data_structure/index.md
|
||||
|
|
Loading…
Reference in a new issue