Add Q&A of computational_complexity and graph chapter (#512)

* add Q&A in the summary.md of computational complexity chapter

* add Q&A in the summary.md of graph

* Update summary.md

* Update summary.md

* Update summary.md

* Update summary.md

---------

Co-authored-by: Yudong Jin <krahets@163.com>
This commit is contained in:
Sizhuo Long 2023-05-24 20:46:12 +08:00 committed by GitHub
parent dc49fdf75e
commit 16365ae5f0
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
3 changed files with 34 additions and 4 deletions

View file

@ -21,3 +21,20 @@
- 算法运行过程中的相关内存空间可分为输入空间、暂存空间、输出空间。通常情况下,输入空间不计入空间复杂度计算。暂存空间可分为指令空间、数据空间、栈帧空间,其中栈帧空间通常仅在递归函数中影响空间复杂度。
- 我们通常只关注最差空间复杂度,即统计算法在最差输入数据和最差运行时间点下的空间复杂度。
- 常见空间复杂度从小到大排列有 $O(1)$ , $O(\log n)$ , $O(n)$ , $O(n^2)$ , $O(2^n)$ 等。
## Q & A
!!! question "尾递归的空间复杂度是 $O(1)$ 吗?"
理论上,尾递归函数的空间复杂度可以被优化至 $O(1)$ 。不过绝大多数编程语言(例如 Java, Python, C++, Go, C# 等)
都不支持自动优化尾递归,因此一般来说空间复杂度是 $O(n)$ 。
!!! question "函数和方法这两个术语的区别是什么?"
函数function可以独立被执行所有参数都以显式传递。
方法method与一个对象关联方法被隐式传递给调用它的对象方法能够对类的实例中包含的数据进行操作。
!!! question "图片“空间复杂度的常见类型”反映的是否是占用空间的绝对大小?"
不是,该图片展示的是空间复杂度(即增长趋势),而不是占用空间的绝对大小。每个曲线都包含一个常数项,用来把所有曲线的取值范围压缩到一个视觉舒适的范围内。
实际中,因为我们通常不知道每个方法的“常数项”复杂度是多少,所以一般无法仅凭复杂度来选择 $n = 8 之下的最优解法;但相对地 $n = 8^5$ 就很好选了,这是复杂度占主导的情况。

View file

@ -1,15 +1,13 @@
# 小结
## 知识回顾
### 数据结构分类
**数据结构分类**
- 数据结构可以从逻辑结构和物理结构两个角度进行分类。逻辑结构描述了数据元素之间的逻辑关系,而物理结构描述了数据在计算机内存中的存储方式。
- 常见的逻辑结构包括线性、树状和网状等。通常我们根据逻辑结构将数据结构分为线性(数组、链表、栈、队列)和非线性(树、图、堆)两种。哈希表的实现可能同时包含线性和非线性结构。
- 当程序运行时,数据被存储在计算机内存中。每个内存空间都拥有对应的内存地址,程序通过这些内存地址访问数据。
- 物理结构主要分为连续空间存储(数组)和离散空间存储(链表)。所有数据结构都是由数组、链表或两者的组合实现的。
### 数据类型与编码
**数据类型与编码**
- 计算机中的基本数据类型包括整数 byte, short, int, long 、浮点数 float, double 、字符 char 和布尔 boolean 。它们的取值范围取决于占用空间大小和表示方式。
- 原码、反码和补码是在计算机中编码数字的三种方法,它们之间是可以相互转换的。整数的原码的最高位是符号位,其余位是数字的值。

View file

@ -11,3 +11,18 @@
- 树是图的一种特例,树的遍历也是图的遍历的一种特例。
- 图的广度优先遍历是一种由近及远、层层扩张的搜索方式,通常借助队列实现。
- 图的深度优先遍历是一种优先走到底、无路可走时再回溯的搜索方式,常基于递归来实现。
## Q & A
!!! question "路径的定义是顶点序列还是边序列?"
维基百科上不同语言版本的定义不一致英文版是“路径是一个边序列”而中文版是“路径是一个顶点序列”。以下是英文版原文In graph theory, a path in a graph is a finite or infinite sequence of edges which joins a sequence of vertices.
在本文中,路径被认为是一个边序列,而不是一个顶点序列。这是因为两个顶点之间可能存在多条边连接,此时每条边都对应一条路径。
!!! question "非连通图中,是否会有无法遍历到的点?"
在非连通图中,从某个顶点出发,至少有一个顶点无法到达。遍历非连通图需要设置多个起点,以遍历到图的所有连通分量。
!!! question "在邻接表中,“与该顶点相连的所有顶点”的顶点顺序是否有要求?"
可以是任意顺序。但在实际应用中,可能会需要按照指定规则来排序,比如按照顶点添加的次序、或者按照顶点值大小的顺序等等,这样可以有助于快速查找“带有某种极值”的顶点。