mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-25 13:36:31 +08:00
Merge branch 'krahets:master' into master
This commit is contained in:
commit
07827ae298
9 changed files with 531 additions and 39 deletions
130
codes/swift/.gitignore
vendored
Normal file
130
codes/swift/.gitignore
vendored
Normal file
|
@ -0,0 +1,130 @@
|
|||
# Created by https://www.toptal.com/developers/gitignore/api/objective-c,swift,swiftpackagemanager
|
||||
# Edit at https://www.toptal.com/developers/gitignore?templates=objective-c,swift,swiftpackagemanager
|
||||
|
||||
### Objective-C ###
|
||||
# Xcode
|
||||
#
|
||||
# gitignore contributors: remember to update Global/Xcode.gitignore, Objective-C.gitignore & Swift.gitignore
|
||||
|
||||
## User settings
|
||||
xcuserdata/
|
||||
|
||||
## compatibility with Xcode 8 and earlier (ignoring not required starting Xcode 9)
|
||||
*.xcscmblueprint
|
||||
*.xccheckout
|
||||
|
||||
## compatibility with Xcode 3 and earlier (ignoring not required starting Xcode 4)
|
||||
build/
|
||||
DerivedData/
|
||||
*.moved-aside
|
||||
*.pbxuser
|
||||
!default.pbxuser
|
||||
*.mode1v3
|
||||
!default.mode1v3
|
||||
*.mode2v3
|
||||
!default.mode2v3
|
||||
*.perspectivev3
|
||||
!default.perspectivev3
|
||||
|
||||
## Obj-C/Swift specific
|
||||
*.hmap
|
||||
|
||||
## App packaging
|
||||
*.ipa
|
||||
*.dSYM.zip
|
||||
*.dSYM
|
||||
|
||||
# CocoaPods
|
||||
# We recommend against adding the Pods directory to your .gitignore. However
|
||||
# you should judge for yourself, the pros and cons are mentioned at:
|
||||
# https://guides.cocoapods.org/using/using-cocoapods.html#should-i-check-the-pods-directory-into-source-control
|
||||
# Pods/
|
||||
# Add this line if you want to avoid checking in source code from the Xcode workspace
|
||||
# *.xcworkspace
|
||||
|
||||
# Carthage
|
||||
# Add this line if you want to avoid checking in source code from Carthage dependencies.
|
||||
# Carthage/Checkouts
|
||||
|
||||
Carthage/Build/
|
||||
|
||||
# fastlane
|
||||
# It is recommended to not store the screenshots in the git repo.
|
||||
# Instead, use fastlane to re-generate the screenshots whenever they are needed.
|
||||
# For more information about the recommended setup visit:
|
||||
# https://docs.fastlane.tools/best-practices/source-control/#source-control
|
||||
|
||||
fastlane/report.xml
|
||||
fastlane/Preview.html
|
||||
fastlane/screenshots/**/*.png
|
||||
fastlane/test_output
|
||||
|
||||
# Code Injection
|
||||
# After new code Injection tools there's a generated folder /iOSInjectionProject
|
||||
# https://github.com/johnno1962/injectionforxcode
|
||||
|
||||
iOSInjectionProject/
|
||||
|
||||
### Objective-C Patch ###
|
||||
|
||||
### Swift ###
|
||||
# Xcode
|
||||
# gitignore contributors: remember to update Global/Xcode.gitignore, Objective-C.gitignore & Swift.gitignore
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
## Playgrounds
|
||||
timeline.xctimeline
|
||||
playground.xcworkspace
|
||||
|
||||
# Swift Package Manager
|
||||
# Add this line if you want to avoid checking in source code from Swift Package Manager dependencies.
|
||||
# Packages/
|
||||
# Package.pins
|
||||
# Package.resolved
|
||||
# *.xcodeproj
|
||||
# Xcode automatically generates this directory with a .xcworkspacedata file and xcuserdata
|
||||
# hence it is not needed unless you have added a package configuration file to your project
|
||||
# .swiftpm
|
||||
|
||||
.build/
|
||||
|
||||
# CocoaPods
|
||||
# We recommend against adding the Pods directory to your .gitignore. However
|
||||
# you should judge for yourself, the pros and cons are mentioned at:
|
||||
# https://guides.cocoapods.org/using/using-cocoapods.html#should-i-check-the-pods-directory-into-source-control
|
||||
# Pods/
|
||||
# Add this line if you want to avoid checking in source code from the Xcode workspace
|
||||
# *.xcworkspace
|
||||
|
||||
# Carthage
|
||||
# Add this line if you want to avoid checking in source code from Carthage dependencies.
|
||||
# Carthage/Checkouts
|
||||
|
||||
|
||||
# Accio dependency management
|
||||
Dependencies/
|
||||
.accio/
|
||||
|
||||
# fastlane
|
||||
# It is recommended to not store the screenshots in the git repo.
|
||||
# Instead, use fastlane to re-generate the screenshots whenever they are needed.
|
||||
# For more information about the recommended setup visit:
|
||||
# https://docs.fastlane.tools/best-practices/source-control/#source-control
|
||||
|
||||
|
||||
# Code Injection
|
||||
# After new code Injection tools there's a generated folder /iOSInjectionProject
|
||||
# https://github.com/johnno1962/injectionforxcode
|
||||
|
||||
|
||||
### SwiftPackageManager ###
|
||||
Packages
|
||||
xcuserdata
|
||||
*.xcodeproj
|
||||
|
||||
|
||||
# End of https://www.toptal.com/developers/gitignore/api/objective-c,swift,swiftpackagemanager
|
18
codes/swift/Package.swift
Normal file
18
codes/swift/Package.swift
Normal file
|
@ -0,0 +1,18 @@
|
|||
// swift-tools-version: 5.7
|
||||
|
||||
import PackageDescription
|
||||
|
||||
let package = Package(
|
||||
name: "HelloAlgo",
|
||||
products: [
|
||||
.executable(name: "time_complexity", targets: ["time_complexity"]),
|
||||
.executable(name: "worst_best_time_complexity", targets: ["worst_best_time_complexity"]),
|
||||
.executable(name: "space_complexity", targets: ["space_complexity"]),
|
||||
],
|
||||
targets: [
|
||||
.target(name: "utils", path: "utils"),
|
||||
.executableTarget(name: "time_complexity", path: "chapter_computational_complexity", sources: ["time_complexity.swift"]),
|
||||
.executableTarget(name: "worst_best_time_complexity", path: "chapter_computational_complexity", sources: ["worst_best_time_complexity.swift"]),
|
||||
.executableTarget(name: "space_complexity", dependencies: ["utils"], path: "chapter_computational_complexity", sources: ["space_complexity.swift"]),
|
||||
]
|
||||
)
|
|
@ -0,0 +1,98 @@
|
|||
/*
|
||||
* File: space_complexity.swift
|
||||
* Created Time: 2023-01-01
|
||||
* Author: nuomi1 (nuomi1@qq.com)
|
||||
*/
|
||||
|
||||
import utils
|
||||
|
||||
// 函数
|
||||
@discardableResult
|
||||
func function() -> Int {
|
||||
// do something
|
||||
return 0
|
||||
}
|
||||
|
||||
// 常数阶
|
||||
func constant(n: Int) {
|
||||
// 常量、变量、对象占用 O(1) 空间
|
||||
let a = 0
|
||||
var b = 0
|
||||
let nums = Array(repeating: 0, count: 10000)
|
||||
let node = ListNode(x: 0)
|
||||
// 循环中的变量占用 O(1) 空间
|
||||
for _ in 0 ..< n {
|
||||
let c = 0
|
||||
}
|
||||
// 循环中的函数占用 O(1) 空间
|
||||
for _ in 0 ..< n {
|
||||
function()
|
||||
}
|
||||
}
|
||||
|
||||
// 线性阶
|
||||
func linear(n: Int) {
|
||||
// 长度为 n 的数组占用 O(n) 空间
|
||||
let nums = Array(repeating: 0, count: n)
|
||||
// 长度为 n 的列表占用 O(n) 空间
|
||||
let nodes = (0 ..< n).map { ListNode(x: $0) }
|
||||
// 长度为 n 的哈希表占用 O(n) 空间
|
||||
let map = Dictionary(uniqueKeysWithValues: (0 ..< n).map { ($0, "\($0)") })
|
||||
}
|
||||
|
||||
// 线性阶(递归实现)
|
||||
func linearRecur(n: Int) {
|
||||
print("递归 n = \(n)")
|
||||
if n == 1 {
|
||||
return
|
||||
}
|
||||
linearRecur(n: n - 1)
|
||||
}
|
||||
|
||||
// 平方阶
|
||||
func quadratic(n: Int) {
|
||||
// 二维列表占用 O(n^2) 空间
|
||||
let numList = Array(repeating: Array(repeating: 0, count: n), count: n)
|
||||
}
|
||||
|
||||
// 平方阶(递归实现)
|
||||
@discardableResult
|
||||
func quadraticRecur(n: Int) -> Int {
|
||||
if n <= 0 {
|
||||
return 0
|
||||
}
|
||||
// 数组 nums 长度为 n, n-1, ..., 2, 1
|
||||
let nums = Array(repeating: 0, count: n)
|
||||
print("递归 n = \(n) 中的 nums 长度 = \(nums.count)")
|
||||
return quadraticRecur(n: n - 1)
|
||||
}
|
||||
|
||||
// 指数阶(建立满二叉树)
|
||||
func buildTree(n: Int) -> TreeNode? {
|
||||
if n == 0 {
|
||||
return nil
|
||||
}
|
||||
let root = TreeNode(x: 0)
|
||||
root.left = buildTree(n: n - 1)
|
||||
root.right = buildTree(n: n - 1)
|
||||
return root
|
||||
}
|
||||
|
||||
@main
|
||||
enum SpaceComplexity {
|
||||
// Driver Code
|
||||
static func main() {
|
||||
let n = 5
|
||||
// 常数阶
|
||||
constant(n: n)
|
||||
// 线性阶
|
||||
linear(n: n)
|
||||
linearRecur(n: n)
|
||||
// 平方阶
|
||||
quadratic(n: n)
|
||||
quadraticRecur(n: n)
|
||||
// 指数阶
|
||||
let root = buildTree(n: n)
|
||||
PrintUtil.printTree(root: root)
|
||||
}
|
||||
}
|
|
@ -131,40 +131,41 @@ func factorialRecur(n: Int) -> Int {
|
|||
return count
|
||||
}
|
||||
|
||||
func main() {
|
||||
// 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势
|
||||
let n = 8
|
||||
print("输入数据大小 n =", n)
|
||||
@main
|
||||
enum TimeComplexity {
|
||||
static func main() {
|
||||
// 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势
|
||||
let n = 8
|
||||
print("输入数据大小 n =", n)
|
||||
|
||||
var count = constant(n: n)
|
||||
print("常数阶的计算操作数量 =", count)
|
||||
var count = constant(n: n)
|
||||
print("常数阶的计算操作数量 =", count)
|
||||
|
||||
count = linear(n: n)
|
||||
print("线性阶的计算操作数量 =", count)
|
||||
count = arrayTraversal(nums: Array(repeating: 0, count: n))
|
||||
print("线性阶(遍历数组)的计算操作数量 =", count)
|
||||
count = linear(n: n)
|
||||
print("线性阶的计算操作数量 =", count)
|
||||
count = arrayTraversal(nums: Array(repeating: 0, count: n))
|
||||
print("线性阶(遍历数组)的计算操作数量 =", count)
|
||||
|
||||
count = quadratic(n: n)
|
||||
print("平方阶的计算操作数量 =", count)
|
||||
var nums = Array(sequence(first: n, next: { $0 > 0 ? $0 - 1 : nil })) // [n,n-1,...,2,1]
|
||||
count = bubbleSort(nums: &nums)
|
||||
print("平方阶(冒泡排序)的计算操作数量 =", count)
|
||||
count = quadratic(n: n)
|
||||
print("平方阶的计算操作数量 =", count)
|
||||
var nums = Array(sequence(first: n, next: { $0 > 0 ? $0 - 1 : nil })) // [n,n-1,...,2,1]
|
||||
count = bubbleSort(nums: &nums)
|
||||
print("平方阶(冒泡排序)的计算操作数量 =", count)
|
||||
|
||||
count = exponential(n: n)
|
||||
print("指数阶(循环实现)的计算操作数量 =", count)
|
||||
count = expRecur(n: n)
|
||||
print("指数阶(递归实现)的计算操作数量 =", count)
|
||||
count = exponential(n: n)
|
||||
print("指数阶(循环实现)的计算操作数量 =", count)
|
||||
count = expRecur(n: n)
|
||||
print("指数阶(递归实现)的计算操作数量 =", count)
|
||||
|
||||
count = logarithmic(n: n)
|
||||
print("对数阶(循环实现)的计算操作数量 =", count)
|
||||
count = logRecur(n: n)
|
||||
print("对数阶(递归实现)的计算操作数量 =", count)
|
||||
count = logarithmic(n: n)
|
||||
print("对数阶(循环实现)的计算操作数量 =", count)
|
||||
count = logRecur(n: n)
|
||||
print("对数阶(递归实现)的计算操作数量 =", count)
|
||||
|
||||
count = linearLogRecur(n: Double(n))
|
||||
print("线性对数阶(递归实现)的计算操作数量 =", count)
|
||||
count = linearLogRecur(n: Double(n))
|
||||
print("线性对数阶(递归实现)的计算操作数量 =", count)
|
||||
|
||||
count = factorialRecur(n: n)
|
||||
print("阶乘阶(递归实现)的计算操作数量 =", count)
|
||||
count = factorialRecur(n: n)
|
||||
print("阶乘阶(递归实现)的计算操作数量 =", count)
|
||||
}
|
||||
}
|
||||
|
||||
main()
|
||||
|
|
|
@ -23,15 +23,16 @@ func findOne(nums: [Int]) -> Int {
|
|||
return -1
|
||||
}
|
||||
|
||||
// Driver Code
|
||||
func main() {
|
||||
for _ in 0 ..< 10 {
|
||||
let n = 100
|
||||
let nums = randomNumbers(n: n)
|
||||
let index = findOne(nums: nums)
|
||||
print("数组 [ 1, 2, ..., n ] 被打乱后 =", nums)
|
||||
print("数字 1 的索引为", index)
|
||||
@main
|
||||
enum WorstBestTimeComplexity {
|
||||
// Driver Code
|
||||
static func main() {
|
||||
for _ in 0 ..< 10 {
|
||||
let n = 100
|
||||
let nums = randomNumbers(n: n)
|
||||
let index = findOne(nums: nums)
|
||||
print("数组 [ 1, 2, ..., n ] 被打乱后 =", nums)
|
||||
print("数字 1 的索引为", index)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
main()
|
||||
|
|
14
codes/swift/utils/ListNode.swift
Normal file
14
codes/swift/utils/ListNode.swift
Normal file
|
@ -0,0 +1,14 @@
|
|||
/*
|
||||
* File: ListNode.swift
|
||||
* Created Time: 2023-01-02
|
||||
* Author: nuomi1 (nuomi1@qq.com)
|
||||
*/
|
||||
|
||||
public class ListNode {
|
||||
public var val: Int // 结点值
|
||||
public var next: ListNode? // 后继结点引用
|
||||
|
||||
public init(x: Int) {
|
||||
val = x
|
||||
}
|
||||
}
|
61
codes/swift/utils/PrintUtil.swift
Normal file
61
codes/swift/utils/PrintUtil.swift
Normal file
|
@ -0,0 +1,61 @@
|
|||
/*
|
||||
* File: PrintUtil.swift
|
||||
* Created Time: 2023-01-02
|
||||
* Author: nuomi1 (nuomi1@qq.com)
|
||||
*/
|
||||
|
||||
public enum PrintUtil {
|
||||
private class Trunk {
|
||||
var prev: Trunk?
|
||||
var str: String
|
||||
|
||||
init(prev: Trunk?, str: String) {
|
||||
self.prev = prev
|
||||
self.str = str
|
||||
}
|
||||
}
|
||||
|
||||
public static func printTree(root: TreeNode?) {
|
||||
printTree(root: root, prev: nil, isLeft: false)
|
||||
}
|
||||
|
||||
private static func printTree(root: TreeNode?, prev: Trunk?, isLeft: Bool) {
|
||||
if root == nil {
|
||||
return
|
||||
}
|
||||
|
||||
var prevStr = " "
|
||||
let trunk = Trunk(prev: prev, str: prevStr)
|
||||
|
||||
printTree(root: root?.right, prev: trunk, isLeft: true)
|
||||
|
||||
if prev == nil {
|
||||
trunk.str = "———"
|
||||
} else if isLeft {
|
||||
trunk.str = "/———"
|
||||
prevStr = " |"
|
||||
} else {
|
||||
trunk.str = "\\———"
|
||||
prev?.str = prevStr
|
||||
}
|
||||
|
||||
showTrunks(p: trunk)
|
||||
print(" \(root!.val)")
|
||||
|
||||
if prev != nil {
|
||||
prev?.str = prevStr
|
||||
}
|
||||
trunk.str = " |"
|
||||
|
||||
printTree(root: root?.left, prev: trunk, isLeft: false)
|
||||
}
|
||||
|
||||
private static func showTrunks(p: Trunk?) {
|
||||
if p == nil {
|
||||
return
|
||||
}
|
||||
|
||||
showTrunks(p: p?.prev)
|
||||
print(p!.str, terminator: "")
|
||||
}
|
||||
}
|
17
codes/swift/utils/TreeNode.swift
Normal file
17
codes/swift/utils/TreeNode.swift
Normal file
|
@ -0,0 +1,17 @@
|
|||
/*
|
||||
* File: TreeNode.swift
|
||||
* Created Time: 2023-01-02
|
||||
* Author: nuomi1 (nuomi1@qq.com)
|
||||
*/
|
||||
|
||||
public class TreeNode {
|
||||
public var val: Int // 结点值
|
||||
public var height: Int // 结点高度
|
||||
public var left: TreeNode? // 左子结点引用
|
||||
public var right: TreeNode? // 右子结点引用
|
||||
|
||||
public init(x: Int) {
|
||||
val = x
|
||||
height = 0
|
||||
}
|
||||
}
|
|
@ -174,6 +174,34 @@ comments: true
|
|||
}
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
||||
```swift title=""
|
||||
// 类
|
||||
class Node {
|
||||
var val: Int
|
||||
var next: Node?
|
||||
|
||||
init(x: Int) {
|
||||
val = x
|
||||
}
|
||||
}
|
||||
|
||||
// 函数
|
||||
func function() -> Int {
|
||||
// do something...
|
||||
return 0
|
||||
}
|
||||
|
||||
func algorithm(n: Int) -> Int { // 输入数据
|
||||
let a = 0 // 暂存数据(常量)
|
||||
var b = 0 // 暂存数据(变量)
|
||||
let node = Node(x: 0) // 暂存数据(对象)
|
||||
let c = function() // 栈帧空间(调用函数)
|
||||
return a + b + c // 输出数据
|
||||
}
|
||||
```
|
||||
|
||||
## 推算方法
|
||||
|
||||
空间复杂度的推算方法和时间复杂度总体类似,只是从统计“计算操作数量”变为统计“使用空间大小”。与时间复杂度不同的是,**我们一般只关注「最差空间复杂度」**。这是因为内存空间是一个硬性要求,我们必须保证在所有输入数据下都有足够的内存空间预留。
|
||||
|
@ -261,6 +289,18 @@ comments: true
|
|||
}
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
||||
```swift title=""
|
||||
func algorithm(n: Int) {
|
||||
let a = 0 // O(1)
|
||||
let b = Array(repeating: 0, count: 10000) // O(1)
|
||||
if n > 10 {
|
||||
let nums = Array(repeating: 0, count: n) // O(n)
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
**在递归函数中,需要注意统计栈帧空间。** 例如函数 `loop()`,在循环中调用了 $n$ 次 `function()` ,每轮中的 `function()` 都返回并释放了栈帧空间,因此空间复杂度仍为 $O(1)$ 。而递归函数 `recur()` 在运行中会同时存在 $n$ 个未返回的 `recur()` ,从而使用 $O(n)$ 的栈帧空间。
|
||||
|
||||
=== "Java"
|
||||
|
@ -387,6 +427,31 @@ comments: true
|
|||
}
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
||||
```swift title=""
|
||||
@discardableResult
|
||||
func function() -> Int {
|
||||
// do something
|
||||
return 0
|
||||
}
|
||||
|
||||
// 循环 O(1)
|
||||
func loop(n: Int) {
|
||||
for _ in 0 ..< n {
|
||||
function()
|
||||
}
|
||||
}
|
||||
|
||||
// 递归 O(n)
|
||||
func recur(n: Int) {
|
||||
if n == 1 {
|
||||
return
|
||||
}
|
||||
recur(n: n - 1)
|
||||
}
|
||||
```
|
||||
|
||||
## 常见类型
|
||||
|
||||
设输入数据大小为 $n$ ,常见的空间复杂度类型有(从低到高排列)
|
||||
|
@ -536,6 +601,27 @@ $$
|
|||
}
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
||||
```swift title="space_complexity.swift"
|
||||
// 常数阶
|
||||
func constant(n: Int) {
|
||||
// 常量、变量、对象占用 O(1) 空间
|
||||
let a = 0
|
||||
var b = 0
|
||||
let nums = Array(repeating: 0, count: 10000)
|
||||
let node = ListNode(x: 0)
|
||||
// 循环中的变量占用 O(1) 空间
|
||||
for _ in 0 ..< n {
|
||||
let c = 0
|
||||
}
|
||||
// 循环中的函数占用 O(1) 空间
|
||||
for _ in 0 ..< n {
|
||||
function()
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### 线性阶 $O(n)$
|
||||
|
||||
线性阶常见于元素数量与 $n$ 成正比的数组、链表、栈、队列等。
|
||||
|
@ -654,6 +740,20 @@ $$
|
|||
}
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
||||
```swift title="space_complexity.swift"
|
||||
// 线性阶
|
||||
func linear(n: Int) {
|
||||
// 长度为 n 的数组占用 O(n) 空间
|
||||
let nums = Array(repeating: 0, count: n)
|
||||
// 长度为 n 的列表占用 O(n) 空间
|
||||
let nodes = (0 ..< n).map { ListNode(x: $0) }
|
||||
// 长度为 n 的哈希表占用 O(n) 空间
|
||||
let map = Dictionary(uniqueKeysWithValues: (0 ..< n).map { ($0, "\($0)") })
|
||||
}
|
||||
```
|
||||
|
||||
以下递归函数会同时存在 $n$ 个未返回的 `algorithm()` 函数,使用 $O(n)$ 大小的栈帧空间。
|
||||
|
||||
=== "Java"
|
||||
|
@ -731,6 +831,19 @@ $$
|
|||
}
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
||||
```swift title="space_complexity.swift"
|
||||
// 线性阶(递归实现)
|
||||
func linearRecur(n: Int) {
|
||||
print("递归 n = \(n)")
|
||||
if n == 1 {
|
||||
return
|
||||
}
|
||||
linearRecur(n: n - 1)
|
||||
}
|
||||
```
|
||||
|
||||
![space_complexity_recursive_linear](space_complexity.assets/space_complexity_recursive_linear.png)
|
||||
|
||||
<p align="center"> Fig. 递归函数产生的线性阶空间复杂度 </p>
|
||||
|
@ -838,6 +951,16 @@ $$
|
|||
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
||||
```swift title="space_complexity.swift"
|
||||
// 平方阶
|
||||
func quadratic(n: Int) {
|
||||
// 二维列表占用 O(n^2) 空间
|
||||
let numList = Array(repeating: Array(repeating: 0, count: n), count: n)
|
||||
}
|
||||
```
|
||||
|
||||
在以下递归函数中,同时存在 $n$ 个未返回的 `algorithm()` ,并且每个函数中都初始化了一个数组,长度分别为 $n, n-1, n-2, ..., 2, 1$ ,平均长度为 $\frac{n}{2}$ ,因此总体使用 $O(n^2)$ 空间。
|
||||
|
||||
=== "Java"
|
||||
|
@ -921,6 +1044,20 @@ $$
|
|||
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
||||
```swift title="space_complexity.swift"
|
||||
// 平方阶(递归实现)
|
||||
func quadraticRecur(n: Int) -> Int {
|
||||
if n <= 0 {
|
||||
return 0
|
||||
}
|
||||
// 数组 nums 长度为 n, n-1, ..., 2, 1
|
||||
let nums = Array(repeating: 0, count: n)
|
||||
return quadraticRecur(n: n - 1)
|
||||
}
|
||||
```
|
||||
|
||||
![space_complexity_recursive_quadratic](space_complexity.assets/space_complexity_recursive_quadratic.png)
|
||||
|
||||
<p align="center"> Fig. 递归函数产生的平方阶空间复杂度 </p>
|
||||
|
@ -1014,6 +1151,21 @@ $$
|
|||
}
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
||||
```swift title="space_complexity.swift"
|
||||
// 指数阶(建立满二叉树)
|
||||
func buildTree(n: Int) -> TreeNode? {
|
||||
if n == 0 {
|
||||
return nil
|
||||
}
|
||||
let root = TreeNode(x: 0)
|
||||
root.left = buildTree(n: n - 1)
|
||||
root.right = buildTree(n: n - 1)
|
||||
return root
|
||||
}
|
||||
```
|
||||
|
||||
![space_complexity_exponential](space_complexity.assets/space_complexity_exponential.png)
|
||||
|
||||
<p align="center"> Fig. 满二叉树下的指数阶空间复杂度 </p>
|
||||
|
|
Loading…
Reference in a new issue