hello-algo/chapter_divide_and_conquer/hanota_problem.md

276 lines
9.1 KiB
Markdown
Raw Normal View History

2023-07-17 02:17:42 +08:00
---
comments: true
2023-07-17 17:51:03 +08:00
status: new
2023-07-17 02:17:42 +08:00
---
2023-07-17 04:20:53 +08:00
# 12.4.   汉诺塔问题
2023-07-17 02:17:42 +08:00
在归并排序和构建二叉树中,我们将原问题分解为两个规模为原问题一半的子问题。然而,对于即将介绍的汉诺塔问题,我们采用不同的分解策略。
!!! question
给定三根柱子,记为 `A` , `B` , `C` 。起始状态下,柱子 `A` 上套着 $n$ 个圆盘,它们从上到下按照从小到大的顺序排列。我们的任务是要把这 $n$ 个圆盘移到柱子 `C` 上,并保持它们的原有顺序不变。在移动圆盘的过程中,需要遵守以下规则:
1. 圆盘只能从一个柱子顶部拿出,从另一个柱子顶部放入;
2. 每次只能移动一个圆盘;
3. 小圆盘必须时刻位于大圆盘之上;
![汉诺塔问题示例](hanota_problem.assets/hanota_example.png)
<p align="center"> Fig. 汉诺塔问题示例 </p>
在本文中,**我们将规模为 $i$ 的汉诺塔问题记做 $f(i)$** 。例如 $f(3)$ 代表将 $3$ 个圆盘从 `A` 移动至 `C` 的汉诺塔问题。
先考虑最简单的情况:对于问题 $f(1)$ ,即当只有一个圆盘时,则将它直接从 `A` 移动至 `C` 即可。
=== "<1>"
![规模为 1 问题的解](hanota_problem.assets/hanota_f1_step1.png)
=== "<2>"
![hanota_f1_step2](hanota_problem.assets/hanota_f1_step2.png)
对于问题 $f(2)$ ,即当有两个圆盘时,**由于要时刻满足小圆盘在大圆盘之上,因此需要借助 `B` 来完成移动**,包括三步:
1. 先将上面的小圆盘从 `A` 移至 `B`
2. 再将大圆盘从 `A` 移至 `C`
3. 最后将小圆盘从 `B` 移至 `C`
如下图所示,对于小圆盘的移动,**我们称 `C` 为目标柱、`B` 为缓冲柱**。
=== "<1>"
![规模为 2 问题的解](hanota_problem.assets/hanota_f2_step1.png)
=== "<2>"
![hanota_f2_step2](hanota_problem.assets/hanota_f2_step2.png)
=== "<3>"
![hanota_f2_step3](hanota_problem.assets/hanota_f2_step3.png)
=== "<4>"
![hanota_f2_step4](hanota_problem.assets/hanota_f2_step4.png)
对于问题 $f(3)$ ,即当有三个圆盘时,情况变得稍微复杂了一些。由于已知 $f(1)$ 和 $f(2)$ 的解,我们可以从分治角度思考,**将 `A` 顶部的两个圆盘看做一个整体**,并执行以下步骤:
1.`B` 为目标柱、`C` 为缓冲柱,将两个圆盘从 `A` 移动至 `B`
2.`A` 中剩余的一个圆盘从 `A` 移动至 `C`
3.`C` 为目标柱、`A` 为缓冲柱,将两个圆盘从 `B` 移动至 `C`
这样三个圆盘就被顺利地从 `A` 移动至 `C` 了。
=== "<1>"
![规模为 3 问题的解](hanota_problem.assets/hanota_f3_step1.png)
=== "<2>"
![hanota_f3_step2](hanota_problem.assets/hanota_f3_step2.png)
=== "<3>"
![hanota_f3_step3](hanota_problem.assets/hanota_f3_step3.png)
=== "<4>"
![hanota_f3_step4](hanota_problem.assets/hanota_f3_step4.png)
本质上看,我们将问题 $f(3)$ 划分为两个子问题 $f(2)$ 和子问题 $f(1)$。按顺序解决这三个子问题之后,原问题随之得到解决。**以上分析说明了子问题的独立性,以及解是可以合并的**。
至此,我们可总结出汉诺塔问题的分治策略:**将原问题 $f(n)$ 划分为两个子问题 $f(n-1)$ 和一个子问题 $f(1)$** 。子问题的解决顺序为:
1. 将 $n-1$ 个圆盘借助 `C``A` 移至 `B`
2. 将剩余 $1$ 个圆盘从 `A` 直接移至 `C`
3. 将 $n-1$ 个圆盘借助 `A``B` 移至 `C`
并且,对于这两个子问题 $f(n-1)$ **可以通过相同的方式进行递归划分**,直至达到最小子问题 $f(1)$ 。而 $f(1)$ 的解是已知的,只需一次移动操作即可。
![汉诺塔问题的分治策略](hanota_problem.assets/hanota_divide_and_conquer.png)
<p align="center"> Fig. 汉诺塔问题的分治策略 </p>
在代码实现中,我们声明一个递归函数 `dfs(i, src, buf, tar)` ,它的作用是将柱 `src` 顶部的 $i$ 个圆盘借助缓冲柱 `buf` 移动至目标柱 `tar`
=== "Java"
```java title="hanota.java"
2023-07-17 04:20:53 +08:00
/* 移动一个圆盘 */
void move(List<Integer> src, List<Integer> tar) {
// 从 src 顶部拿出一个圆盘
Integer pan = src.remove(src.size() - 1);
// 将圆盘放入 tar 顶部
tar.add(pan);
}
/* 求解汉诺塔:问题 f(i) */
void dfs(int i, List<Integer> src, List<Integer> buf, List<Integer> tar) {
// 若 src 只剩下一个圆盘,则直接将其移到 tar
if (i == 1) {
move(src, tar);
return;
}
// 子问题 f(i-1) :将 src 顶部 i-1 个圆盘借助 tar 移到 buf
dfs(i - 1, src, tar, buf);
// 子问题 f(1) :将 src 剩余一个圆盘移到 tar
move(src, tar);
// 子问题 f(i-1) :将 buf 顶部 i-1 个圆盘借助 src 移到 tar
dfs(i - 1, buf, src, tar);
}
/* 求解汉诺塔 */
void hanota(List<Integer> A, List<Integer> B, List<Integer> C) {
int n = A.size();
// 将 A 顶部 n 个圆盘借助 B 移到 C
dfs(n, A, B, C);
}
2023-07-17 02:17:42 +08:00
```
=== "C++"
```cpp title="hanota.cpp"
2023-07-17 04:20:53 +08:00
/* 移动一个圆盘 */
void move(vector<int> &src, vector<int> &tar) {
// 从 src 顶部拿出一个圆盘
int pan = src.back();
src.pop_back();
// 将圆盘放入 tar 顶部
tar.push_back(pan);
}
/* 求解汉诺塔:问题 f(i) */
void dfs(int i, vector<int> &src, vector<int> &buf, vector<int> &tar) {
// 若 src 只剩下一个圆盘,则直接将其移到 tar
if (i == 1) {
move(src, tar);
return;
}
// 子问题 f(i-1) :将 src 顶部 i-1 个圆盘借助 tar 移到 buf
dfs(i - 1, src, tar, buf);
// 子问题 f(1) :将 src 剩余一个圆盘移到 tar
move(src, tar);
// 子问题 f(i-1) :将 buf 顶部 i-1 个圆盘借助 src 移到 tar
dfs(i - 1, buf, src, tar);
}
/* 求解汉诺塔 */
void hanota(vector<int> &A, vector<int> &B, vector<int> &C) {
int n = A.size();
// 将 A 顶部 n 个圆盘借助 B 移到 C
dfs(n, A, B, C);
}
2023-07-17 02:17:42 +08:00
```
=== "Python"
```python title="hanota.py"
def move(src: list[int], tar: list[int]):
"""移动一个圆盘"""
# 从 src 顶部拿出一个圆盘
pan = src.pop()
# 将圆盘放入 tar 顶部
tar.append(pan)
def dfs(i: int, src: list[int], buf: list[int], tar: list[int]):
"""求解汉诺塔:问题 f(i)"""
# 若 src 只剩下一个圆盘,则直接将其移到 tar
if i == 1:
move(src, tar)
return
# 子问题 f(i-1) :将 src 顶部 i-1 个圆盘借助 tar 移到 buf
dfs(i - 1, src, tar, buf)
# 子问题 f(1) :将 src 剩余一个圆盘移到 tar
move(src, tar)
# 子问题 f(i-1) :将 buf 顶部 i-1 个圆盘借助 src 移到 tar
dfs(i - 1, buf, src, tar)
def hanota(A: list[int], B: list[int], C: list[int]):
"""求解汉诺塔"""
n = len(A)
# 将 A 顶部 n 个圆盘借助 B 移到 C
dfs(n, A, B, C)
```
=== "Go"
```go title="hanota.go"
[class]{}-[func]{move}
[class]{}-[func]{dfs}
[class]{}-[func]{hanota}
```
=== "JavaScript"
```javascript title="hanota.js"
[class]{}-[func]{move}
[class]{}-[func]{dfs}
[class]{}-[func]{hanota}
```
=== "TypeScript"
```typescript title="hanota.ts"
[class]{}-[func]{move}
[class]{}-[func]{dfs}
[class]{}-[func]{hanota}
```
=== "C"
```c title="hanota.c"
[class]{}-[func]{move}
[class]{}-[func]{dfs}
[class]{}-[func]{hanota}
```
=== "C#"
```csharp title="hanota.cs"
[class]{hanota}-[func]{move}
[class]{hanota}-[func]{dfs}
[class]{hanota}-[func]{hanota}
```
=== "Swift"
```swift title="hanota.swift"
[class]{}-[func]{move}
[class]{}-[func]{dfs}
[class]{}-[func]{hanota}
```
=== "Zig"
```zig title="hanota.zig"
[class]{}-[func]{move}
[class]{}-[func]{dfs}
[class]{}-[func]{hanota}
```
=== "Dart"
```dart title="hanota.dart"
[class]{}-[func]{move}
[class]{}-[func]{dfs}
[class]{}-[func]{hanota}
```
如下图所示,汉诺塔问题形成一个高度为 $n$ 的递归树,每个节点代表一个子问题、对应一个开启的 `dfs()` 函数,**因此时间复杂度为 $O(2^n)$ ,空间复杂度为 $O(n)$** 。
![汉诺塔问题的递归树](hanota_problem.assets/hanota_recursive_tree.png)
<p align="center"> Fig. 汉诺塔问题的递归树 </p>
有趣的是,汉诺塔问题源自一种古老的传说故事。在古印度的一个寺庙里,僧侣们有三根高大的钻石柱子,以及 $64$ 个大小不一的金圆盘。僧侣们不断地移动原盘,他们相信在最后一个圆盘被正确放置的那一刻,这个世界就会结束。
然而根据以上分析,即使僧侣们每秒钟移动一次,总共需要大约 $2^{64} \approx 1.84×10^{19}$ 秒,合约 $5850$ 亿年,远远超过了现在对宇宙年龄的估计。所以,倘若这个传说是真的,我们应该不需要担心世界末日的到来。