hello-algo/zh-Hant/docs/chapter_searching/replace_linear_by_hashing.md

588 lines
22 KiB
Markdown
Raw Normal View History

2024-04-06 03:02:20 +08:00
---
comments: true
---
# 10.4   雜湊最佳化策略
在演算法題中,**我們常透過將線性查詢替換為雜湊查詢來降低演算法的時間複雜度**。我們藉助一個演算法題來加深理解。
!!! question
給定一個整數陣列 `nums` 和一個目標元素 `target` ,請在陣列中搜索“和”為 `target` 的兩個元素,並返回它們的陣列索引。返回任意一個解即可。
## 10.4.1   線性查詢:以時間換空間
考慮直接走訪所有可能的組合。如圖 10-9 所示,我們開啟一個兩層迴圈,在每輪中判斷兩個整數的和是否為 `target` ,若是,則返回它們的索引。
![線性查詢求解兩數之和](replace_linear_by_hashing.assets/two_sum_brute_force.png){ class="animation-figure" }
<p align="center"> 圖 10-9 &nbsp; 線性查詢求解兩數之和 </p>
程式碼如下所示:
=== "Python"
```python title="two_sum.py"
def two_sum_brute_force(nums: list[int], target: int) -> list[int]:
"""方法一:暴力列舉"""
# 兩層迴圈,時間複雜度為 O(n^2)
for i in range(len(nums) - 1):
for j in range(i + 1, len(nums)):
if nums[i] + nums[j] == target:
return [i, j]
return []
```
=== "C++"
```cpp title="two_sum.cpp"
/* 方法一:暴力列舉 */
vector<int> twoSumBruteForce(vector<int> &nums, int target) {
int size = nums.size();
// 兩層迴圈,時間複雜度為 O(n^2)
for (int i = 0; i < size - 1; i++) {
for (int j = i + 1; j < size; j++) {
if (nums[i] + nums[j] == target)
return {i, j};
}
}
return {};
}
```
=== "Java"
```java title="two_sum.java"
/* 方法一:暴力列舉 */
int[] twoSumBruteForce(int[] nums, int target) {
int size = nums.length;
// 兩層迴圈,時間複雜度為 O(n^2)
for (int i = 0; i < size - 1; i++) {
for (int j = i + 1; j < size; j++) {
if (nums[i] + nums[j] == target)
return new int[] { i, j };
}
}
return new int[0];
}
```
=== "C#"
```csharp title="two_sum.cs"
/* 方法一:暴力列舉 */
int[] TwoSumBruteForce(int[] nums, int target) {
int size = nums.Length;
// 兩層迴圈,時間複雜度為 O(n^2)
for (int i = 0; i < size - 1; i++) {
for (int j = i + 1; j < size; j++) {
if (nums[i] + nums[j] == target)
return [i, j];
}
}
return [];
}
```
=== "Go"
```go title="two_sum.go"
/* 方法一:暴力列舉 */
func twoSumBruteForce(nums []int, target int) []int {
size := len(nums)
// 兩層迴圈,時間複雜度為 O(n^2)
for i := 0; i < size-1; i++ {
for j := i + 1; i < size; j++ {
if nums[i]+nums[j] == target {
return []int{i, j}
}
}
}
return nil
}
```
=== "Swift"
```swift title="two_sum.swift"
/* 方法一:暴力列舉 */
func twoSumBruteForce(nums: [Int], target: Int) -> [Int] {
// 兩層迴圈,時間複雜度為 O(n^2)
for i in nums.indices.dropLast() {
for j in nums.indices.dropFirst(i + 1) {
if nums[i] + nums[j] == target {
return [i, j]
}
}
}
return [0]
}
```
=== "JS"
```javascript title="two_sum.js"
/* 方法一:暴力列舉 */
function twoSumBruteForce(nums, target) {
const n = nums.length;
// 兩層迴圈,時間複雜度為 O(n^2)
for (let i = 0; i < n; i++) {
for (let j = i + 1; j < n; j++) {
if (nums[i] + nums[j] === target) {
return [i, j];
}
}
}
return [];
}
```
=== "TS"
```typescript title="two_sum.ts"
/* 方法一:暴力列舉 */
function twoSumBruteForce(nums: number[], target: number): number[] {
const n = nums.length;
// 兩層迴圈,時間複雜度為 O(n^2)
for (let i = 0; i < n; i++) {
for (let j = i + 1; j < n; j++) {
if (nums[i] + nums[j] === target) {
return [i, j];
}
}
}
return [];
}
```
=== "Dart"
```dart title="two_sum.dart"
/* 方法一: 暴力列舉 */
List<int> twoSumBruteForce(List<int> nums, int target) {
int size = nums.length;
// 兩層迴圈,時間複雜度為 O(n^2)
for (var i = 0; i < size - 1; i++) {
for (var j = i + 1; j < size; j++) {
if (nums[i] + nums[j] == target) return [i, j];
}
}
return [0];
}
```
=== "Rust"
```rust title="two_sum.rs"
/* 方法一:暴力列舉 */
pub fn two_sum_brute_force(nums: &Vec<i32>, target: i32) -> Option<Vec<i32>> {
let size = nums.len();
// 兩層迴圈,時間複雜度為 O(n^2)
for i in 0..size - 1 {
for j in i + 1..size {
if nums[i] + nums[j] == target {
return Some(vec![i as i32, j as i32]);
}
}
}
None
}
```
=== "C"
```c title="two_sum.c"
/* 方法一:暴力列舉 */
int *twoSumBruteForce(int *nums, int numsSize, int target, int *returnSize) {
for (int i = 0; i < numsSize; ++i) {
for (int j = i + 1; j < numsSize; ++j) {
if (nums[i] + nums[j] == target) {
int *res = malloc(sizeof(int) * 2);
res[0] = i, res[1] = j;
*returnSize = 2;
return res;
}
}
}
*returnSize = 0;
return NULL;
}
```
=== "Kotlin"
```kotlin title="two_sum.kt"
/* 方法一:暴力列舉 */
fun twoSumBruteForce(nums: IntArray, target: Int): IntArray {
val size = nums.size
// 兩層迴圈,時間複雜度為 O(n^2)
for (i in 0..<size - 1) {
for (j in i + 1..<size) {
if (nums[i] + nums[j] == target) return intArrayOf(i, j)
}
}
return IntArray(0)
}
```
=== "Ruby"
```ruby title="two_sum.rb"
2024-04-13 21:17:44 +08:00
### 方法一:暴力列舉 ###
def two_sum_brute_force(nums, target)
# 兩層迴圈,時間複雜度為 O(n^2)
for i in 0...(nums.length - 1)
for j in (i + 1)...nums.length
return [i, j] if nums[i] + nums[j] == target
end
end
[]
end
2024-04-06 03:02:20 +08:00
```
=== "Zig"
```zig title="two_sum.zig"
// 方法一:暴力列舉
fn twoSumBruteForce(nums: []i32, target: i32) ?[2]i32 {
var size: usize = nums.len;
var i: usize = 0;
// 兩層迴圈,時間複雜度為 O(n^2)
while (i < size - 1) : (i += 1) {
var j = i + 1;
while (j < size) : (j += 1) {
if (nums[i] + nums[j] == target) {
return [_]i32{@intCast(i), @intCast(j)};
}
}
}
return null;
}
```
??? pythontutor "視覺化執行"
2024-04-11 01:11:20 +08:00
<div style="height: 441px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20two_sum_brute_force%28nums%3A%20list%5Bint%5D%2C%20target%3A%20int%29%20-%3E%20list%5Bint%5D%3A%0A%20%20%20%20%22%22%22%E6%96%B9%E6%B3%95%E4%B8%80%EF%BC%9A%E6%9A%B4%E5%8A%9B%E5%88%97%E8%88%89%22%22%22%0A%20%20%20%20%23%20%E5%85%A9%E5%B1%A4%E8%BF%B4%E5%9C%88%EF%BC%8C%E6%99%82%E9%96%93%E8%A4%87%E9%9B%9C%E5%BA%A6%E7%82%BA%20O%28n%5E2%29%0A%20%20%20%20for%20i%20in%20range%28len%28nums%29%20-%201%29%3A%0A%20%20%20%20%20%20%20%20for%20j%20in%20range%28i%20%2B%201%2C%20len%28nums%29%29%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20nums%5Bi%5D%20%2B%20nums%5Bj%5D%20%3D%3D%20target%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20return%20%5Bi%2C%20j%5D%0A%20%20%20%20return%20%5B%5D%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20nums%20%3D%20%5B2%2C%207%2C%2011%2C%2015%5D%0A%20%20%20%20target%20%3D%2013%0A%20%20%20%20res%20%3D%20two_sum_brute_force%28nums%2C%20target%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=5&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20two_sum_brute_force%28nums%3A%20list%5Bint%5D%2C%20target%3A%20int%29%20-%3E%20list%5Bint%5D%3A%0A%20%20%20%20%22%22%22%E6%96%B9%E6%B3%95%E4%B8%80%EF%BC%9A%E6%9A%B4%E5%8A%9B%E5%88%97%E8%88%89%22%22%22%0A%20%20%20%20%23%20%E5%85%A9%E5%B1%A4%E8%BF%B4%E5%9C%88%EF%BC%8C%E6%99%82%E9%96%93%E8%A4%87%E9%9B%9C%E5%BA%A6%E7%82%BA%20O%28n%5E2%29%0A%20%20%20%20for%20i%20in%20range%28len%28nums%29%20-%201%29%3A%0A%20%20%20%20%20%20%20%20for%20j%20in%20range%28i%20%2B%201%2C%20len%28nums%29%29%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20nums%5Bi%5D%20%2B%20nums%5Bj%5D%20%3D%3D%20target%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20return%20%5Bi%2C%20j%5D%0A%20%20%20%20return%20%5B%5D%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20nums%20%3D%20%5B2%2C%207%2C%2011%2C%2015%5D%0A%20%20%20%20target%20%3D%2013%0A%20%20%20%20res%20%3D%20two_sum_brute_force%28nums%2C%20target%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=5&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
2024-04-06 03:02:20 +08:00
此方法的時間複雜度為 $O(n^2)$ ,空間複雜度為 $O(1)$ ,在大資料量下非常耗時。
## 10.4.2 &nbsp; 雜湊查詢:以空間換時間
考慮藉助一個雜湊表,鍵值對分別為陣列元素和元素索引。迴圈走訪陣列,每輪執行圖 10-10 所示的步驟。
1. 判斷數字 `target - nums[i]` 是否在雜湊表中,若是,則直接返回這兩個元素的索引。
2. 將鍵值對 `nums[i]` 和索引 `i` 新增進雜湊表。
=== "<1>"
![輔助雜湊表求解兩數之和](replace_linear_by_hashing.assets/two_sum_hashtable_step1.png){ class="animation-figure" }
=== "<2>"
![two_sum_hashtable_step2](replace_linear_by_hashing.assets/two_sum_hashtable_step2.png){ class="animation-figure" }
=== "<3>"
![two_sum_hashtable_step3](replace_linear_by_hashing.assets/two_sum_hashtable_step3.png){ class="animation-figure" }
<p align="center"> 圖 10-10 &nbsp; 輔助雜湊表求解兩數之和 </p>
實現程式碼如下所示,僅需單層迴圈即可:
=== "Python"
```python title="two_sum.py"
def two_sum_hash_table(nums: list[int], target: int) -> list[int]:
"""方法二:輔助雜湊表"""
# 輔助雜湊表,空間複雜度為 O(n)
dic = {}
# 單層迴圈,時間複雜度為 O(n)
for i in range(len(nums)):
if target - nums[i] in dic:
return [dic[target - nums[i]], i]
dic[nums[i]] = i
return []
```
=== "C++"
```cpp title="two_sum.cpp"
/* 方法二:輔助雜湊表 */
vector<int> twoSumHashTable(vector<int> &nums, int target) {
int size = nums.size();
// 輔助雜湊表,空間複雜度為 O(n)
unordered_map<int, int> dic;
// 單層迴圈,時間複雜度為 O(n)
for (int i = 0; i < size; i++) {
if (dic.find(target - nums[i]) != dic.end()) {
return {dic[target - nums[i]], i};
}
dic.emplace(nums[i], i);
}
return {};
}
```
=== "Java"
```java title="two_sum.java"
/* 方法二:輔助雜湊表 */
int[] twoSumHashTable(int[] nums, int target) {
int size = nums.length;
// 輔助雜湊表,空間複雜度為 O(n)
Map<Integer, Integer> dic = new HashMap<>();
// 單層迴圈,時間複雜度為 O(n)
for (int i = 0; i < size; i++) {
if (dic.containsKey(target - nums[i])) {
return new int[] { dic.get(target - nums[i]), i };
}
dic.put(nums[i], i);
}
return new int[0];
}
```
=== "C#"
```csharp title="two_sum.cs"
/* 方法二:輔助雜湊表 */
int[] TwoSumHashTable(int[] nums, int target) {
int size = nums.Length;
// 輔助雜湊表,空間複雜度為 O(n)
Dictionary<int, int> dic = [];
// 單層迴圈,時間複雜度為 O(n)
for (int i = 0; i < size; i++) {
if (dic.ContainsKey(target - nums[i])) {
return [dic[target - nums[i]], i];
}
dic.Add(nums[i], i);
}
return [];
}
```
=== "Go"
```go title="two_sum.go"
/* 方法二:輔助雜湊表 */
func twoSumHashTable(nums []int, target int) []int {
// 輔助雜湊表,空間複雜度為 O(n)
hashTable := map[int]int{}
// 單層迴圈,時間複雜度為 O(n)
for idx, val := range nums {
if preIdx, ok := hashTable[target-val]; ok {
return []int{preIdx, idx}
}
hashTable[val] = idx
}
return nil
}
```
=== "Swift"
```swift title="two_sum.swift"
/* 方法二:輔助雜湊表 */
func twoSumHashTable(nums: [Int], target: Int) -> [Int] {
// 輔助雜湊表,空間複雜度為 O(n)
var dic: [Int: Int] = [:]
// 單層迴圈,時間複雜度為 O(n)
for i in nums.indices {
if let j = dic[target - nums[i]] {
return [j, i]
}
dic[nums[i]] = i
}
return [0]
}
```
=== "JS"
```javascript title="two_sum.js"
/* 方法二:輔助雜湊表 */
function twoSumHashTable(nums, target) {
// 輔助雜湊表,空間複雜度為 O(n)
let m = {};
// 單層迴圈,時間複雜度為 O(n)
for (let i = 0; i < nums.length; i++) {
if (m[target - nums[i]] !== undefined) {
return [m[target - nums[i]], i];
} else {
m[nums[i]] = i;
}
}
return [];
}
```
=== "TS"
```typescript title="two_sum.ts"
/* 方法二:輔助雜湊表 */
function twoSumHashTable(nums: number[], target: number): number[] {
// 輔助雜湊表,空間複雜度為 O(n)
let m: Map<number, number> = new Map();
// 單層迴圈,時間複雜度為 O(n)
for (let i = 0; i < nums.length; i++) {
let index = m.get(target - nums[i]);
if (index !== undefined) {
return [index, i];
} else {
m.set(nums[i], i);
}
}
return [];
}
```
=== "Dart"
```dart title="two_sum.dart"
/* 方法二: 輔助雜湊表 */
List<int> twoSumHashTable(List<int> nums, int target) {
int size = nums.length;
// 輔助雜湊表,空間複雜度為 O(n)
Map<int, int> dic = HashMap();
// 單層迴圈,時間複雜度為 O(n)
for (var i = 0; i < size; i++) {
if (dic.containsKey(target - nums[i])) {
return [dic[target - nums[i]]!, i];
}
dic.putIfAbsent(nums[i], () => i);
}
return [0];
}
```
=== "Rust"
```rust title="two_sum.rs"
/* 方法二:輔助雜湊表 */
pub fn two_sum_hash_table(nums: &Vec<i32>, target: i32) -> Option<Vec<i32>> {
// 輔助雜湊表,空間複雜度為 O(n)
let mut dic = HashMap::new();
// 單層迴圈,時間複雜度為 O(n)
for (i, num) in nums.iter().enumerate() {
match dic.get(&(target - num)) {
Some(v) => return Some(vec![*v as i32, i as i32]),
None => dic.insert(num, i as i32),
};
}
None
}
```
=== "C"
```c title="two_sum.c"
/* 雜湊表 */
typedef struct {
int key;
int val;
UT_hash_handle hh; // 基於 uthash.h 實現
} HashTable;
/* 雜湊表查詢 */
HashTable *find(HashTable *h, int key) {
HashTable *tmp;
HASH_FIND_INT(h, &key, tmp);
return tmp;
}
/* 雜湊表元素插入 */
void insert(HashTable *h, int key, int val) {
HashTable *t = find(h, key);
if (t == NULL) {
HashTable *tmp = malloc(sizeof(HashTable));
tmp->key = key, tmp->val = val;
HASH_ADD_INT(h, key, tmp);
} else {
t->val = val;
}
}
/* 方法二:輔助雜湊表 */
int *twoSumHashTable(int *nums, int numsSize, int target, int *returnSize) {
HashTable *hashtable = NULL;
for (int i = 0; i < numsSize; i++) {
HashTable *t = find(hashtable, target - nums[i]);
if (t != NULL) {
int *res = malloc(sizeof(int) * 2);
res[0] = t->val, res[1] = i;
*returnSize = 2;
return res;
}
insert(hashtable, nums[i], i);
}
*returnSize = 0;
return NULL;
}
```
=== "Kotlin"
```kotlin title="two_sum.kt"
/* 方法二:輔助雜湊表 */
fun twoSumHashTable(nums: IntArray, target: Int): IntArray {
val size = nums.size
// 輔助雜湊表,空間複雜度為 O(n)
val dic = HashMap<Int, Int>()
// 單層迴圈,時間複雜度為 O(n)
for (i in 0..<size) {
if (dic.containsKey(target - nums[i])) {
return intArrayOf(dic[target - nums[i]]!!, i)
}
dic[nums[i]] = i
}
return IntArray(0)
}
```
=== "Ruby"
```ruby title="two_sum.rb"
2024-04-13 21:17:44 +08:00
### 方法二:輔助雜湊表 ###
def two_sum_hash_table(nums, target)
# 輔助雜湊表,空間複雜度為 O(n)
dic = {}
# 單層迴圈,時間複雜度為 O(n)
for i in 0...nums.length
return [dic[target - nums[i]], i] if dic.has_key?(target - nums[i])
dic[nums[i]] = i
end
[]
end
2024-04-06 03:02:20 +08:00
```
=== "Zig"
```zig title="two_sum.zig"
// 方法二:輔助雜湊表
fn twoSumHashTable(nums: []i32, target: i32) !?[2]i32 {
var size: usize = nums.len;
// 輔助雜湊表,空間複雜度為 O(n)
var dic = std.AutoHashMap(i32, i32).init(std.heap.page_allocator);
defer dic.deinit();
var i: usize = 0;
// 單層迴圈,時間複雜度為 O(n)
while (i < size) : (i += 1) {
if (dic.contains(target - nums[i])) {
return [_]i32{dic.get(target - nums[i]).?, @intCast(i)};
}
try dic.put(nums[i], @intCast(i));
}
return null;
}
```
??? pythontutor "視覺化執行"
2024-04-11 01:11:20 +08:00
<div style="height: 477px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20two_sum_hash_table%28nums%3A%20list%5Bint%5D%2C%20target%3A%20int%29%20-%3E%20list%5Bint%5D%3A%0A%20%20%20%20%22%22%22%E6%96%B9%E6%B3%95%E4%BA%8C%EF%BC%9A%E8%BC%94%E5%8A%A9%E9%9B%9C%E6%B9%8A%E8%A1%A8%22%22%22%0A%20%20%20%20%23%20%E8%BC%94%E5%8A%A9%E9%9B%9C%E6%B9%8A%E8%A1%A8%EF%BC%8C%E7%A9%BA%E9%96%93%E8%A4%87%E9%9B%9C%E5%BA%A6%E7%82%BA%20O%28n%29%0A%20%20%20%20dic%20%3D%20%7B%7D%0A%20%20%20%20%23%20%E5%96%AE%E5%B1%A4%E8%BF%B4%E5%9C%88%EF%BC%8C%E6%99%82%E9%96%93%E8%A4%87%E9%9B%9C%E5%BA%A6%E7%82%BA%20O%28n%29%0A%20%20%20%20for%20i%20in%20range%28len%28nums%29%29%3A%0A%20%20%20%20%20%20%20%20if%20target%20-%20nums%5Bi%5D%20in%20dic%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20return%20%5Bdic%5Btarget%20-%20nums%5Bi%5D%5D%2C%20i%5D%0A%20%20%20%20%20%20%20%20dic%5Bnums%5Bi%5D%5D%20%3D%20i%0A%20%20%20%20return%20%5B%5D%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20nums%20%3D%20%5B2%2C%207%2C%2011%2C%2015%5D%0A%20%20%20%20target%20%3D%2013%0A%20%20%20%20res%20%3D%20two_sum_hash_table%28nums%2C%20target%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=5&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20two_sum_hash_table%28nums%3A%20list%5Bint%5D%2C%20target%3A%20int%29%20-%3E%20list%5Bint%5D%3A%0A%20%20%20%20%22%22%22%E6%96%B9%E6%B3%95%E4%BA%8C%EF%BC%9A%E8%BC%94%E5%8A%A9%E9%9B%9C%E6%B9%8A%E8%A1%A8%22%22%22%0A%20%20%20%20%23%20%E8%BC%94%E5%8A%A9%E9%9B%9C%E6%B9%8A%E8%A1%A8%EF%BC%8C%E7%A9%BA%E9%96%93%E8%A4%87%E9%9B%9C%E5%BA%A6%E7%82%BA%20O%28n%29%0A%20%20%20%20dic%20%3D%20%7B%7D%0A%20%20%20%20%23%20%E5%96%AE%E5%B1%A4%E8%BF%B4%E5%9C%88%EF%BC%8C%E6%99%82%E9%96%93%E8%A4%87%E9%9B%9C%E5%BA%A6%E7%82%BA%20O%28n%29%0A%20%20%20%20for%20i%20in%20range%28len%28nums%29%29%3A%0A%20%20%20%20%20%20%20%20if%20target%20-%20nums%5Bi%5D%20in%20dic%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20return%20%5Bdic%5Btarget%20-%20nums%5Bi%5D%5D%2C%20i%5D%0A%20%20%20%20%20%20%20%20dic%5Bnums%5Bi%5D%5D%20%3D%20i%0A%20%20%20%20return%20%5B%5D%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20nums%20%3D%20%5B2%2C%207%2C%2011%2C%2015%5D%0A%20%20%20%20target%20%3D%2013%0A%20%20%20%20res%20%3D%20two_sum_hash_table%28nums%2C%20target%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=5&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
2024-04-06 03:02:20 +08:00
此方法透過雜湊查詢將時間複雜度從 $O(n^2)$ 降至 $O(n)$ ,大幅提升執行效率。
由於需要維護一個額外的雜湊表,因此空間複雜度為 $O(n)$ 。**儘管如此,該方法的整體時空效率更為均衡,因此它是本題的最優解法**。