hello-algo/codes/python/chapter_tree/avl_tree.py

204 lines
6.8 KiB
Python
Raw Normal View History

2022-12-27 18:34:12 +08:00
"""
File: avl_tree.py
Created Time: 2022-12-20
Author: a16su (lpluls001@gmail.com)
"""
import sys, os.path as osp
2023-04-09 05:05:35 +08:00
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
2023-03-03 03:07:22 +08:00
from modules import *
2023-04-09 05:05:35 +08:00
class AVLTree:
2023-04-09 05:05:35 +08:00
"""AVL 树"""
def __init__(self, root: TreeNode | None = None):
2023-04-09 05:05:35 +08:00
"""构造方法"""
self.root = root
def height(self, node: TreeNode | None) -> int:
2023-04-09 05:05:35 +08:00
"""获取节点高度"""
# 空节点高度为 -1 ,叶节点高度为 0
if node is not None:
return node.height
return -1
def __update_height(self, node: TreeNode | None):
2023-04-09 05:05:35 +08:00
"""更新节点高度"""
# 节点高度等于最高子树高度 + 1
node.height = max([self.height(node.left), self.height(node.right)]) + 1
def balance_factor(self, node: TreeNode | None) -> int:
2023-04-09 05:05:35 +08:00
"""获取平衡因子"""
# 空节点平衡因子为 0
if node is None:
return 0
# 节点平衡因子 = 左子树高度 - 右子树高度
return self.height(node.left) - self.height(node.right)
def __right_rotate(self, node: TreeNode | None) -> TreeNode | None:
2023-04-09 05:05:35 +08:00
"""右旋操作"""
child = node.left
grand_child = child.right
# 以 child 为原点,将 node 向右旋转
child.right = node
node.left = grand_child
# 更新节点高度
self.__update_height(node)
self.__update_height(child)
# 返回旋转后子树的根节点
return child
def __left_rotate(self, node: TreeNode | None) -> TreeNode | None:
2023-04-09 05:05:35 +08:00
"""左旋操作"""
child = node.right
grand_child = child.left
# 以 child 为原点,将 node 向左旋转
child.left = node
node.right = grand_child
# 更新节点高度
self.__update_height(node)
self.__update_height(child)
# 返回旋转后子树的根节点
return child
def __rotate(self, node: TreeNode | None) -> TreeNode | None:
2023-04-09 05:05:35 +08:00
"""执行旋转操作,使该子树重新恢复平衡"""
# 获取节点 node 的平衡因子
balance_factor = self.balance_factor(node)
# 左偏树
if balance_factor > 1:
if self.balance_factor(node.left) >= 0:
# 右旋
return self.__right_rotate(node)
else:
# 先左旋后右旋
node.left = self.__left_rotate(node.left)
return self.__right_rotate(node)
# 右偏树
elif balance_factor < -1:
if self.balance_factor(node.right) <= 0:
# 左旋
return self.__left_rotate(node)
else:
# 先右旋后左旋
node.right = self.__right_rotate(node.right)
return self.__left_rotate(node)
# 平衡树,无须旋转,直接返回
return node
2023-07-24 22:34:05 +08:00
def insert(self, val):
2023-04-09 05:05:35 +08:00
"""插入节点"""
self.root = self.__insert_helper(self.root, val)
def __insert_helper(self, node: TreeNode | None, val: int) -> TreeNode:
2023-04-09 05:05:35 +08:00
"""递归插入节点(辅助方法)"""
if node is None:
2022-12-27 18:34:12 +08:00
return TreeNode(val)
# 1. 查找插入位置,并插入节点
if val < node.val:
2022-12-27 18:34:12 +08:00
node.left = self.__insert_helper(node.left, val)
elif val > node.val:
2022-12-27 18:34:12 +08:00
node.right = self.__insert_helper(node.right, val)
else:
# 重复节点不插入,直接返回
return node
# 更新节点高度
self.__update_height(node)
# 2. 执行旋转操作,使该子树重新恢复平衡
2022-12-27 18:34:12 +08:00
return self.__rotate(node)
2023-07-24 22:34:05 +08:00
def remove(self, val: int):
2023-04-09 05:05:35 +08:00
"""删除节点"""
self.root = self.__remove_helper(self.root, val)
def __remove_helper(self, node: TreeNode | None, val: int) -> TreeNode | None:
2023-04-09 05:05:35 +08:00
"""递归删除节点(辅助方法)"""
if node is None:
return None
# 1. 查找节点,并删除之
if val < node.val:
2022-12-27 18:34:12 +08:00
node.left = self.__remove_helper(node.left, val)
elif val > node.val:
2022-12-27 18:34:12 +08:00
node.right = self.__remove_helper(node.right, val)
else:
if node.left is None or node.right is None:
child = node.left or node.right
# 子节点数量 = 0 ,直接删除 node 并返回
if child is None:
return None
# 子节点数量 = 1 ,直接删除 node
else:
node = child
else:
# 子节点数量 = 2 ,则将中序遍历的下个节点删除,并用该节点替换当前节点
temp = node.right
while temp.left is not None:
temp = temp.left
2022-12-27 18:34:12 +08:00
node.right = self.__remove_helper(node.right, temp.val)
node.val = temp.val
# 更新节点高度
self.__update_height(node)
# 2. 执行旋转操作,使该子树重新恢复平衡
2022-12-27 18:34:12 +08:00
return self.__rotate(node)
def search(self, val: int) -> TreeNode | None:
2023-04-09 05:05:35 +08:00
"""查找节点"""
cur = self.root
# 循环查找,越过叶节点后跳出
while cur is not None:
# 目标节点在 cur 的右子树中
if cur.val < val:
cur = cur.right
# 目标节点在 cur 的左子树中
elif cur.val > val:
cur = cur.left
# 找到目标节点,跳出循环
else:
break
# 返回目标节点
return cur
"""Driver Code"""
if __name__ == "__main__":
2023-04-09 05:05:35 +08:00
def test_insert(tree: AVLTree, val: int):
tree.insert(val)
print("\n插入节点 {}AVL 树为".format(val))
print_tree(tree.root)
def test_remove(tree: AVLTree, val: int):
tree.remove(val)
print("\n删除节点 {}AVL 树为".format(val))
print_tree(tree.root)
# 初始化空 AVL 树
avl_tree = AVLTree()
# 插入节点
# 请关注插入节点后AVL 树是如何保持平衡的
test_insert(avl_tree, 1)
test_insert(avl_tree, 2)
test_insert(avl_tree, 3)
test_insert(avl_tree, 4)
test_insert(avl_tree, 5)
test_insert(avl_tree, 8)
test_insert(avl_tree, 7)
test_insert(avl_tree, 9)
test_insert(avl_tree, 10)
test_insert(avl_tree, 6)
# 插入重复节点
test_insert(avl_tree, 7)
# 删除节点
# 请关注删除节点后AVL 树是如何保持平衡的
test_remove(avl_tree, 8) # 删除度为 0 的节点
test_remove(avl_tree, 5) # 删除度为 1 的节点
test_remove(avl_tree, 4) # 删除度为 2 的节点
result_node = avl_tree.search(7)
print("\n查找到的节点对象为 {},节点值 = {}".format(result_node, result_node.val))