mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-27 16:26:29 +08:00
1562 lines
70 KiB
Markdown
1562 lines
70 KiB
Markdown
|
---
|
|||
|
comments: true
|
|||
|
---
|
|||
|
|
|||
|
# 14.3 動態規劃解題思路
|
|||
|
|
|||
|
上兩節介紹了動態規劃問題的主要特徵,接下來我們一起探究兩個更加實用的問題。
|
|||
|
|
|||
|
1. 如何判斷一個問題是不是動態規劃問題?
|
|||
|
2. 求解動態規劃問題該從何處入手,完整步驟是什麼?
|
|||
|
|
|||
|
## 14.3.1 問題判斷
|
|||
|
|
|||
|
總的來說,如果一個問題包含重疊子問題、最優子結構,並滿足無後效性,那麼它通常適合用動態規劃求解。然而,我們很難從問題描述中直接提取出這些特性。因此我們通常會放寬條件,**先觀察問題是否適合使用回溯(窮舉)解決**。
|
|||
|
|
|||
|
**適合用回溯解決的問題通常滿足“決策樹模型”**,這種問題可以使用樹形結構來描述,其中每一個節點代表一個決策,每一條路徑代表一個決策序列。
|
|||
|
|
|||
|
換句話說,如果問題包含明確的決策概念,並且解是透過一系列決策產生的,那麼它就滿足決策樹模型,通常可以使用回溯來解決。
|
|||
|
|
|||
|
在此基礎上,動態規劃問題還有一些判斷的“加分項”。
|
|||
|
|
|||
|
- 問題包含最大(小)或最多(少)等最最佳化描述。
|
|||
|
- 問題的狀態能夠使用一個串列、多維矩陣或樹來表示,並且一個狀態與其周圍的狀態存在遞推關係。
|
|||
|
|
|||
|
相應地,也存在一些“減分項”。
|
|||
|
|
|||
|
- 問題的目標是找出所有可能的解決方案,而不是找出最優解。
|
|||
|
- 問題描述中有明顯的排列組合的特徵,需要返回具體的多個方案。
|
|||
|
|
|||
|
如果一個問題滿足決策樹模型,並具有較為明顯的“加分項”,我們就可以假設它是一個動態規劃問題,並在求解過程中驗證它。
|
|||
|
|
|||
|
## 14.3.2 問題求解步驟
|
|||
|
|
|||
|
動態規劃的解題流程會因問題的性質和難度而有所不同,但通常遵循以下步驟:描述決策,定義狀態,建立 $dp$ 表,推導狀態轉移方程,確定邊界條件等。
|
|||
|
|
|||
|
為了更形象地展示解題步驟,我們使用一個經典問題“最小路徑和”來舉例。
|
|||
|
|
|||
|
!!! question
|
|||
|
|
|||
|
給定一個 $n \times m$ 的二維網格 `grid` ,網格中的每個單元格包含一個非負整數,表示該單元格的代價。機器人以左上角單元格為起始點,每次只能向下或者向右移動一步,直至到達右下角單元格。請返回從左上角到右下角的最小路徑和。
|
|||
|
|
|||
|
圖 14-10 展示了一個例子,給定網格的最小路徑和為 $13$ 。
|
|||
|
|
|||
|
![最小路徑和示例資料](dp_solution_pipeline.assets/min_path_sum_example.png){ class="animation-figure" }
|
|||
|
|
|||
|
<p align="center"> 圖 14-10 最小路徑和示例資料 </p>
|
|||
|
|
|||
|
**第一步:思考每輪的決策,定義狀態,從而得到 $dp$ 表**
|
|||
|
|
|||
|
本題的每一輪的決策就是從當前格子向下或向右走一步。設當前格子的行列索引為 $[i, j]$ ,則向下或向右走一步後,索引變為 $[i+1, j]$ 或 $[i, j+1]$ 。因此,狀態應包含行索引和列索引兩個變數,記為 $[i, j]$ 。
|
|||
|
|
|||
|
狀態 $[i, j]$ 對應的子問題為:從起始點 $[0, 0]$ 走到 $[i, j]$ 的最小路徑和,解記為 $dp[i, j]$ 。
|
|||
|
|
|||
|
至此,我們就得到了圖 14-11 所示的二維 $dp$ 矩陣,其尺寸與輸入網格 $grid$ 相同。
|
|||
|
|
|||
|
![狀態定義與 dp 表](dp_solution_pipeline.assets/min_path_sum_solution_state_definition.png){ class="animation-figure" }
|
|||
|
|
|||
|
<p align="center"> 圖 14-11 狀態定義與 dp 表 </p>
|
|||
|
|
|||
|
!!! note
|
|||
|
|
|||
|
動態規劃和回溯過程可以描述為一個決策序列,而狀態由所有決策變數構成。它應當包含描述解題進度的所有變數,其包含了足夠的資訊,能夠用來推導出下一個狀態。
|
|||
|
|
|||
|
每個狀態都對應一個子問題,我們會定義一個 $dp$ 表來儲存所有子問題的解,狀態的每個獨立變數都是 $dp$ 表的一個維度。從本質上看,$dp$ 表是狀態和子問題的解之間的對映。
|
|||
|
|
|||
|
**第二步:找出最優子結構,進而推導出狀態轉移方程**
|
|||
|
|
|||
|
對於狀態 $[i, j]$ ,它只能從上邊格子 $[i-1, j]$ 和左邊格子 $[i, j-1]$ 轉移而來。因此最優子結構為:到達 $[i, j]$ 的最小路徑和由 $[i, j-1]$ 的最小路徑和與 $[i-1, j]$ 的最小路徑和中較小的那一個決定。
|
|||
|
|
|||
|
根據以上分析,可推出圖 14-12 所示的狀態轉移方程:
|
|||
|
|
|||
|
$$
|
|||
|
dp[i, j] = \min(dp[i-1, j], dp[i, j-1]) + grid[i, j]
|
|||
|
$$
|
|||
|
|
|||
|
![最優子結構與狀態轉移方程](dp_solution_pipeline.assets/min_path_sum_solution_state_transition.png){ class="animation-figure" }
|
|||
|
|
|||
|
<p align="center"> 圖 14-12 最優子結構與狀態轉移方程 </p>
|
|||
|
|
|||
|
!!! note
|
|||
|
|
|||
|
根據定義好的 $dp$ 表,思考原問題和子問題的關係,找出透過子問題的最優解來構造原問題的最優解的方法,即最優子結構。
|
|||
|
|
|||
|
一旦我們找到了最優子結構,就可以使用它來構建出狀態轉移方程。
|
|||
|
|
|||
|
**第三步:確定邊界條件和狀態轉移順序**
|
|||
|
|
|||
|
在本題中,處在首行的狀態只能從其左邊的狀態得來,處在首列的狀態只能從其上邊的狀態得來,因此首行 $i = 0$ 和首列 $j = 0$ 是邊界條件。
|
|||
|
|
|||
|
如圖 14-13 所示,由於每個格子是由其左方格子和上方格子轉移而來,因此我們使用迴圈來走訪矩陣,外迴圈走訪各行,內迴圈走訪各列。
|
|||
|
|
|||
|
![邊界條件與狀態轉移順序](dp_solution_pipeline.assets/min_path_sum_solution_initial_state.png){ class="animation-figure" }
|
|||
|
|
|||
|
<p align="center"> 圖 14-13 邊界條件與狀態轉移順序 </p>
|
|||
|
|
|||
|
!!! note
|
|||
|
|
|||
|
邊界條件在動態規劃中用於初始化 $dp$ 表,在搜尋中用於剪枝。
|
|||
|
|
|||
|
狀態轉移順序的核心是要保證在計算當前問題的解時,所有它依賴的更小子問題的解都已經被正確地計算出來。
|
|||
|
|
|||
|
根據以上分析,我們已經可以直接寫出動態規劃程式碼。然而子問題分解是一種從頂至底的思想,因此按照“暴力搜尋 $\rightarrow$ 記憶化搜尋 $\rightarrow$ 動態規劃”的順序實現更加符合思維習慣。
|
|||
|
|
|||
|
### 1. 方法一:暴力搜尋
|
|||
|
|
|||
|
從狀態 $[i, j]$ 開始搜尋,不斷分解為更小的狀態 $[i-1, j]$ 和 $[i, j-1]$ ,遞迴函式包括以下要素。
|
|||
|
|
|||
|
- **遞迴參數**:狀態 $[i, j]$ 。
|
|||
|
- **返回值**:從 $[0, 0]$ 到 $[i, j]$ 的最小路徑和 $dp[i, j]$ 。
|
|||
|
- **終止條件**:當 $i = 0$ 且 $j = 0$ 時,返回代價 $grid[0, 0]$ 。
|
|||
|
- **剪枝**:當 $i < 0$ 時或 $j < 0$ 時索引越界,此時返回代價 $+\infty$ ,代表不可行。
|
|||
|
|
|||
|
實現程式碼如下:
|
|||
|
|
|||
|
=== "Python"
|
|||
|
|
|||
|
```python title="min_path_sum.py"
|
|||
|
def min_path_sum_dfs(grid: list[list[int]], i: int, j: int) -> int:
|
|||
|
"""最小路徑和:暴力搜尋"""
|
|||
|
# 若為左上角單元格,則終止搜尋
|
|||
|
if i == 0 and j == 0:
|
|||
|
return grid[0][0]
|
|||
|
# 若行列索引越界,則返回 +∞ 代價
|
|||
|
if i < 0 or j < 0:
|
|||
|
return inf
|
|||
|
# 計算從左上角到 (i-1, j) 和 (i, j-1) 的最小路徑代價
|
|||
|
up = min_path_sum_dfs(grid, i - 1, j)
|
|||
|
left = min_path_sum_dfs(grid, i, j - 1)
|
|||
|
# 返回從左上角到 (i, j) 的最小路徑代價
|
|||
|
return min(left, up) + grid[i][j]
|
|||
|
```
|
|||
|
|
|||
|
=== "C++"
|
|||
|
|
|||
|
```cpp title="min_path_sum.cpp"
|
|||
|
/* 最小路徑和:暴力搜尋 */
|
|||
|
int minPathSumDFS(vector<vector<int>> &grid, int i, int j) {
|
|||
|
// 若為左上角單元格,則終止搜尋
|
|||
|
if (i == 0 && j == 0) {
|
|||
|
return grid[0][0];
|
|||
|
}
|
|||
|
// 若行列索引越界,則返回 +∞ 代價
|
|||
|
if (i < 0 || j < 0) {
|
|||
|
return INT_MAX;
|
|||
|
}
|
|||
|
// 計算從左上角到 (i-1, j) 和 (i, j-1) 的最小路徑代價
|
|||
|
int up = minPathSumDFS(grid, i - 1, j);
|
|||
|
int left = minPathSumDFS(grid, i, j - 1);
|
|||
|
// 返回從左上角到 (i, j) 的最小路徑代價
|
|||
|
return min(left, up) != INT_MAX ? min(left, up) + grid[i][j] : INT_MAX;
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "Java"
|
|||
|
|
|||
|
```java title="min_path_sum.java"
|
|||
|
/* 最小路徑和:暴力搜尋 */
|
|||
|
int minPathSumDFS(int[][] grid, int i, int j) {
|
|||
|
// 若為左上角單元格,則終止搜尋
|
|||
|
if (i == 0 && j == 0) {
|
|||
|
return grid[0][0];
|
|||
|
}
|
|||
|
// 若行列索引越界,則返回 +∞ 代價
|
|||
|
if (i < 0 || j < 0) {
|
|||
|
return Integer.MAX_VALUE;
|
|||
|
}
|
|||
|
// 計算從左上角到 (i-1, j) 和 (i, j-1) 的最小路徑代價
|
|||
|
int up = minPathSumDFS(grid, i - 1, j);
|
|||
|
int left = minPathSumDFS(grid, i, j - 1);
|
|||
|
// 返回從左上角到 (i, j) 的最小路徑代價
|
|||
|
return Math.min(left, up) + grid[i][j];
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "C#"
|
|||
|
|
|||
|
```csharp title="min_path_sum.cs"
|
|||
|
/* 最小路徑和:暴力搜尋 */
|
|||
|
int MinPathSumDFS(int[][] grid, int i, int j) {
|
|||
|
// 若為左上角單元格,則終止搜尋
|
|||
|
if (i == 0 && j == 0) {
|
|||
|
return grid[0][0];
|
|||
|
}
|
|||
|
// 若行列索引越界,則返回 +∞ 代價
|
|||
|
if (i < 0 || j < 0) {
|
|||
|
return int.MaxValue;
|
|||
|
}
|
|||
|
// 計算從左上角到 (i-1, j) 和 (i, j-1) 的最小路徑代價
|
|||
|
int up = MinPathSumDFS(grid, i - 1, j);
|
|||
|
int left = MinPathSumDFS(grid, i, j - 1);
|
|||
|
// 返回從左上角到 (i, j) 的最小路徑代價
|
|||
|
return Math.Min(left, up) + grid[i][j];
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "Go"
|
|||
|
|
|||
|
```go title="min_path_sum.go"
|
|||
|
/* 最小路徑和:暴力搜尋 */
|
|||
|
func minPathSumDFS(grid [][]int, i, j int) int {
|
|||
|
// 若為左上角單元格,則終止搜尋
|
|||
|
if i == 0 && j == 0 {
|
|||
|
return grid[0][0]
|
|||
|
}
|
|||
|
// 若行列索引越界,則返回 +∞ 代價
|
|||
|
if i < 0 || j < 0 {
|
|||
|
return math.MaxInt
|
|||
|
}
|
|||
|
// 計算從左上角到 (i-1, j) 和 (i, j-1) 的最小路徑代價
|
|||
|
up := minPathSumDFS(grid, i-1, j)
|
|||
|
left := minPathSumDFS(grid, i, j-1)
|
|||
|
// 返回從左上角到 (i, j) 的最小路徑代價
|
|||
|
return int(math.Min(float64(left), float64(up))) + grid[i][j]
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "Swift"
|
|||
|
|
|||
|
```swift title="min_path_sum.swift"
|
|||
|
/* 最小路徑和:暴力搜尋 */
|
|||
|
func minPathSumDFS(grid: [[Int]], i: Int, j: Int) -> Int {
|
|||
|
// 若為左上角單元格,則終止搜尋
|
|||
|
if i == 0, j == 0 {
|
|||
|
return grid[0][0]
|
|||
|
}
|
|||
|
// 若行列索引越界,則返回 +∞ 代價
|
|||
|
if i < 0 || j < 0 {
|
|||
|
return .max
|
|||
|
}
|
|||
|
// 計算從左上角到 (i-1, j) 和 (i, j-1) 的最小路徑代價
|
|||
|
let up = minPathSumDFS(grid: grid, i: i - 1, j: j)
|
|||
|
let left = minPathSumDFS(grid: grid, i: i, j: j - 1)
|
|||
|
// 返回從左上角到 (i, j) 的最小路徑代價
|
|||
|
return min(left, up) + grid[i][j]
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "JS"
|
|||
|
|
|||
|
```javascript title="min_path_sum.js"
|
|||
|
/* 最小路徑和:暴力搜尋 */
|
|||
|
function minPathSumDFS(grid, i, j) {
|
|||
|
// 若為左上角單元格,則終止搜尋
|
|||
|
if (i === 0 && j === 0) {
|
|||
|
return grid[0][0];
|
|||
|
}
|
|||
|
// 若行列索引越界,則返回 +∞ 代價
|
|||
|
if (i < 0 || j < 0) {
|
|||
|
return Infinity;
|
|||
|
}
|
|||
|
// 計算從左上角到 (i-1, j) 和 (i, j-1) 的最小路徑代價
|
|||
|
const up = minPathSumDFS(grid, i - 1, j);
|
|||
|
const left = minPathSumDFS(grid, i, j - 1);
|
|||
|
// 返回從左上角到 (i, j) 的最小路徑代價
|
|||
|
return Math.min(left, up) + grid[i][j];
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "TS"
|
|||
|
|
|||
|
```typescript title="min_path_sum.ts"
|
|||
|
/* 最小路徑和:暴力搜尋 */
|
|||
|
function minPathSumDFS(
|
|||
|
grid: Array<Array<number>>,
|
|||
|
i: number,
|
|||
|
j: number
|
|||
|
): number {
|
|||
|
// 若為左上角單元格,則終止搜尋
|
|||
|
if (i === 0 && j == 0) {
|
|||
|
return grid[0][0];
|
|||
|
}
|
|||
|
// 若行列索引越界,則返回 +∞ 代價
|
|||
|
if (i < 0 || j < 0) {
|
|||
|
return Infinity;
|
|||
|
}
|
|||
|
// 計算從左上角到 (i-1, j) 和 (i, j-1) 的最小路徑代價
|
|||
|
const up = minPathSumDFS(grid, i - 1, j);
|
|||
|
const left = minPathSumDFS(grid, i, j - 1);
|
|||
|
// 返回從左上角到 (i, j) 的最小路徑代價
|
|||
|
return Math.min(left, up) + grid[i][j];
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "Dart"
|
|||
|
|
|||
|
```dart title="min_path_sum.dart"
|
|||
|
/* 最小路徑和:暴力搜尋 */
|
|||
|
int minPathSumDFS(List<List<int>> grid, int i, int j) {
|
|||
|
// 若為左上角單元格,則終止搜尋
|
|||
|
if (i == 0 && j == 0) {
|
|||
|
return grid[0][0];
|
|||
|
}
|
|||
|
// 若行列索引越界,則返回 +∞ 代價
|
|||
|
if (i < 0 || j < 0) {
|
|||
|
// 在 Dart 中,int 型別是固定範圍的整數,不存在表示“無窮大”的值
|
|||
|
return BigInt.from(2).pow(31).toInt();
|
|||
|
}
|
|||
|
// 計算從左上角到 (i-1, j) 和 (i, j-1) 的最小路徑代價
|
|||
|
int up = minPathSumDFS(grid, i - 1, j);
|
|||
|
int left = minPathSumDFS(grid, i, j - 1);
|
|||
|
// 返回從左上角到 (i, j) 的最小路徑代價
|
|||
|
return min(left, up) + grid[i][j];
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "Rust"
|
|||
|
|
|||
|
```rust title="min_path_sum.rs"
|
|||
|
/* 最小路徑和:暴力搜尋 */
|
|||
|
fn min_path_sum_dfs(grid: &Vec<Vec<i32>>, i: i32, j: i32) -> i32 {
|
|||
|
// 若為左上角單元格,則終止搜尋
|
|||
|
if i == 0 && j == 0 {
|
|||
|
return grid[0][0];
|
|||
|
}
|
|||
|
// 若行列索引越界,則返回 +∞ 代價
|
|||
|
if i < 0 || j < 0 {
|
|||
|
return i32::MAX;
|
|||
|
}
|
|||
|
// 計算從左上角到 (i-1, j) 和 (i, j-1) 的最小路徑代價
|
|||
|
let up = min_path_sum_dfs(grid, i - 1, j);
|
|||
|
let left = min_path_sum_dfs(grid, i, j - 1);
|
|||
|
// 返回從左上角到 (i, j) 的最小路徑代價
|
|||
|
std::cmp::min(left, up) + grid[i as usize][j as usize]
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "C"
|
|||
|
|
|||
|
```c title="min_path_sum.c"
|
|||
|
/* 最小路徑和:暴力搜尋 */
|
|||
|
int minPathSumDFS(int grid[MAX_SIZE][MAX_SIZE], int i, int j) {
|
|||
|
// 若為左上角單元格,則終止搜尋
|
|||
|
if (i == 0 && j == 0) {
|
|||
|
return grid[0][0];
|
|||
|
}
|
|||
|
// 若行列索引越界,則返回 +∞ 代價
|
|||
|
if (i < 0 || j < 0) {
|
|||
|
return INT_MAX;
|
|||
|
}
|
|||
|
// 計算從左上角到 (i-1, j) 和 (i, j-1) 的最小路徑代價
|
|||
|
int up = minPathSumDFS(grid, i - 1, j);
|
|||
|
int left = minPathSumDFS(grid, i, j - 1);
|
|||
|
// 返回從左上角到 (i, j) 的最小路徑代價
|
|||
|
return myMin(left, up) != INT_MAX ? myMin(left, up) + grid[i][j] : INT_MAX;
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "Kotlin"
|
|||
|
|
|||
|
```kotlin title="min_path_sum.kt"
|
|||
|
/* 最小路徑和:暴力搜尋 */
|
|||
|
fun minPathSumDFS(
|
|||
|
grid: Array<Array<Int>>,
|
|||
|
i: Int,
|
|||
|
j: Int
|
|||
|
): Int {
|
|||
|
// 若為左上角單元格,則終止搜尋
|
|||
|
if (i == 0 && j == 0) {
|
|||
|
return grid[0][0]
|
|||
|
}
|
|||
|
// 若行列索引越界,則返回 +∞ 代價
|
|||
|
if (i < 0 || j < 0) {
|
|||
|
return Int.MAX_VALUE
|
|||
|
}
|
|||
|
// 計算從左上角到 (i-1, j) 和 (i, j-1) 的最小路徑代價
|
|||
|
val up = minPathSumDFS(grid, i - 1, j)
|
|||
|
val left = minPathSumDFS(grid, i, j - 1)
|
|||
|
// 返回從左上角到 (i, j) 的最小路徑代價
|
|||
|
return (min(left.toDouble(), up.toDouble()) + grid[i][j]).toInt()
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "Ruby"
|
|||
|
|
|||
|
```ruby title="min_path_sum.rb"
|
|||
|
[class]{}-[func]{min_path_sum_dfs}
|
|||
|
```
|
|||
|
|
|||
|
=== "Zig"
|
|||
|
|
|||
|
```zig title="min_path_sum.zig"
|
|||
|
// 最小路徑和:暴力搜尋
|
|||
|
fn minPathSumDFS(grid: anytype, i: i32, j: i32) i32 {
|
|||
|
// 若為左上角單元格,則終止搜尋
|
|||
|
if (i == 0 and j == 0) {
|
|||
|
return grid[0][0];
|
|||
|
}
|
|||
|
// 若行列索引越界,則返回 +∞ 代價
|
|||
|
if (i < 0 or j < 0) {
|
|||
|
return std.math.maxInt(i32);
|
|||
|
}
|
|||
|
// 計算從左上角到 (i-1, j) 和 (i, j-1) 的最小路徑代價
|
|||
|
var up = minPathSumDFS(grid, i - 1, j);
|
|||
|
var left = minPathSumDFS(grid, i, j - 1);
|
|||
|
// 返回從左上角到 (i, j) 的最小路徑代價
|
|||
|
return @min(left, up) + grid[@as(usize, @intCast(i))][@as(usize, @intCast(j))];
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
??? pythontutor "視覺化執行"
|
|||
|
|
|||
|
<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=from%20math%20import%20inf%0A%0Adef%20min_path_sum_dfs%28grid%3A%20list%5Blist%5Bint%5D%5D,%20i%3A%20int,%20j%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E6%9C%80%E5%B0%8F%E8%B7%AF%E5%BE%84%E5%92%8C%EF%BC%9A%E6%9A%B4%E5%8A%9B%E6%90%9C%E7%B4%A2%22%22%22%0A%20%20%20%20%23%20%E8%8B%A5%E4%B8%BA%E5%B7%A6%E4%B8%8A%E8%A7%92%E5%8D%95%E5%85%83%E6%A0%BC%EF%BC%8C%E5%88%99%E7%BB%88%E6%AD%A2%E6%90%9C%E7%B4%A2%0A%20%20%20%20if%20i%20%3D%3D%200%20and%20j%20%3D%3D%200%3A%0A%20%20%20%20%20%20%20%20return%20grid%5B0%5D%5B0%5D%0A%20%20%20%20%23%20%E8%8B%A5%E8%A1%8C%E5%88%97%E7%B4%A2%E5%BC%95%E8%B6%8A%E7%95%8C%EF%BC%8C%E5%88%99%E8%BF%94%E5%9B%9E%20%2B%E2%88%9E%20%E4%BB%A3%E4%BB%B7%0A%20%20%20%20if%20i%20%3C%200%20or%20j%20%3C%200%3A%0A%20%20%20%20%20%20%20%20return%20inf%0A%20%20%20%20%23%20%E8%AE%A1%E7%AE%97%E4%BB%8E%E5%B7%A6%E4%B8%8A%E8%A7%92%E5%88%B0%20%28i-1,%20j%29%20%E5%92%8C%20%28i,%20j-1%29%20%E7%9A%84%E6%9C%80%E5%B0%8F%E8%B7%AF%E5%BE%84%E4%BB%A3%E4%BB%B7%0A%20%20%20%20up%20%3D%20min_path_sum_dfs%28grid,%20i%20-%201,%20j%29%0A%20%20%20%20left%20%3D%20min_path_sum_dfs%28grid,%20i,%20j%20-%201%29%0A%20%20%20%20%23%20%E8%BF%94%E5%9B%9E%E4%BB%8E%E5%B7%A6%E4%B8%8A%E8%A7%92%E5%88%B0%20%28i,%20j%29%20%E7%9A%84%E6%9C%80%E5%B0%8F%E8%B7%AF%E5%BE%84%E4%BB%A3%E4%BB%B7%0A%20%20%20%20return%20min%28left,%20up%29%20%2B%20grid%5Bi%5D%5Bj%5D%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20grid%20%3D%20%5B%5B1,%203,%201,%205%5D,%20%5B2,%202,%204,%202%5D,%20%5B5,%203,%202,%201%5D,%20%5B4,%203,%205,%202%5D%5D%0A%20%20%20%20n,%20m%20%3D%20len%28grid%29,%20len%28grid%5B0%5D%29%0A%0A%20%20%20%20%23%20%E6%9A%B4%E5%8A%9B%E6%90%9C%E7%B4%A2%0A%20%20%20%20res%20%3D%20min_path_sum_dfs%28grid,%20n%20-%201,%20m%20-%201%29%0A%20%20%20%20print%28f%22%E4%BB%8E%E5%B7%A6%E4%B8%8A%E8%A7%92%E5%88%B0%E5%8F%B3%E4%B8%8B%E8%A7%92%E7%9A%84%E5%81%9A%E5%B0%8F%E8%B7%AF%E5%BE%84%E5%92%8C%E4%B8%BA%20%7Bres%7D%22%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=6&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
|||
|
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=from%20math%20import%20inf%0A%0Adef%20min_path_sum_dfs%28grid%3A%20list%5Blist%5Bint%5D%5D,%20i%3A%20int,%20j%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E6%9C%80%E5%B0%8F%E8%B7%AF%E5%BE%84%E5%92%8C%EF%BC%9A%E6%9A%B4%E5%8A%9B%E6%90%9C%E7%B4%A2%22%22%22%0A%20%20%20%20%23%20%E8%8B%A5%E4%B8%BA%E5%B7%A6%E4%B8%8A%E8%A7%92%E5%8D%95%E5%85%83%E6%A0%BC%EF%BC%8C%E5%88%99%E7%BB%88%E6%AD%A2%E6%90%9C%E7%B4%A2%0A%20%20%20%20if%20i%20%3D%3D%200%20and%20j%20%3D%3D%200%3A%0A%20%20%20%20%20%20%20%20return%20grid%5B0%5D%5B0%5D%0A%20%20%20%20%23%20%E8%8B%A5%E8%A1%8C%E5%88%97%E7%B4%A2%E5%BC%95%E8%B6%8A%E7%95%8C%EF%BC%8C%E5%88%99%E8%BF%94%E5%9B%9E%20%2B%E2%88%9E%20%E4%BB%A3%E4%BB%B7%0A%20%20%20%20if%20i%20%3C%200%20or%20j%20%3C%200%3A%0A%20%20%20%20%20%20%20%20return%20inf%0A%20%20%20%20%23%20%E8%AE%A1%E7%AE%97%E4%BB%8E%E5%B7%A6%E4%B8%8A%E8%A7%92%E5%88%B0%20%28i-1,%20j%29%20%E5%92%8C%20%28i,%20j-1%29%20%E7%9A%84%E6%9C%80%E5%B0%8F%E8%B7%AF%E5%BE%84%E4%BB%A3%E4%BB%B7%0A%20%20%20%20up%20%3D%20min_path_sum_dfs%28grid,%20i%20-%201,%20j%29%0A%20%20%20%20left%20%3D%20min_path_sum_dfs%28grid,%20i,%20j%20-%201%29%0A%20%20%20%20%23%20%E8%BF%94%E5%9B%9E%E4%BB%8E%E5%B7%A6%E4%B8%8A%E8%A7%92%E5%88%B0%20%28i,%20j%29%20%E7%9A%84%E6%9C%80%E5%B0%8F%E8%B7%AF%E5%BE%84%E4%BB%A3%E4%BB%B7%0A%20%20%20%20return%20min%28left,%20up%29%20%2B%20grid%5Bi%5D%5Bj%5D%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20grid%20%3D%20%5B%5B1,%203,%201,%205%5D,%20%5B2,%202,%204,%202%5D,%20%5B5,%203,%202,%201%5D,%20%5B4,%203,%205,%202%5D%5D%0A%20%20%20%20n,%20m%20%3D%20len%28grid%29,%20len%28grid%5B0%5D%29%0A%0A%20%20%20%20%23%20%E6%9A%B4%E5%8A%9B%E6%90%9C%E7%B4%A2%0A%20%20%20%20res%20%3D%20min_path_sum_dfs%28grid,%20n%20-%201,%20m%20-%201%29%0A%20%20%20%20print%28f%22%E4%BB%8E%E5%B7%A6%E4%B8%8A%E8%A7%92%E5%88%B0%E5%8F%B3%E4%B8%8B%E8%A7%92%E7%9A%84%E5%81%9A%E5%B0%8F%E8%B7%AF%E5%BE%84%E5%92%8C%E4%B8%BA%20%7Bres%7D%22%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=6&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
|
|||
|
|
|||
|
圖 14-14 給出了以 $dp[2, 1]$ 為根節點的遞迴樹,其中包含一些重疊子問題,其數量會隨著網格 `grid` 的尺寸變大而急劇增多。
|
|||
|
|
|||
|
從本質上看,造成重疊子問題的原因為:**存在多條路徑可以從左上角到達某一單元格**。
|
|||
|
|
|||
|
![暴力搜尋遞迴樹](dp_solution_pipeline.assets/min_path_sum_dfs.png){ class="animation-figure" }
|
|||
|
|
|||
|
<p align="center"> 圖 14-14 暴力搜尋遞迴樹 </p>
|
|||
|
|
|||
|
每個狀態都有向下和向右兩種選擇,從左上角走到右下角總共需要 $m + n - 2$ 步,所以最差時間複雜度為 $O(2^{m + n})$ 。請注意,這種計算方式未考慮臨近網格邊界的情況,當到達網路邊界時只剩下一種選擇,因此實際的路徑數量會少一些。
|
|||
|
|
|||
|
### 2. 方法二:記憶化搜尋
|
|||
|
|
|||
|
我們引入一個和網格 `grid` 相同尺寸的記憶串列 `mem` ,用於記錄各個子問題的解,並將重疊子問題進行剪枝:
|
|||
|
|
|||
|
=== "Python"
|
|||
|
|
|||
|
```python title="min_path_sum.py"
|
|||
|
def min_path_sum_dfs_mem(
|
|||
|
grid: list[list[int]], mem: list[list[int]], i: int, j: int
|
|||
|
) -> int:
|
|||
|
"""最小路徑和:記憶化搜尋"""
|
|||
|
# 若為左上角單元格,則終止搜尋
|
|||
|
if i == 0 and j == 0:
|
|||
|
return grid[0][0]
|
|||
|
# 若行列索引越界,則返回 +∞ 代價
|
|||
|
if i < 0 or j < 0:
|
|||
|
return inf
|
|||
|
# 若已有記錄,則直接返回
|
|||
|
if mem[i][j] != -1:
|
|||
|
return mem[i][j]
|
|||
|
# 左邊和上邊單元格的最小路徑代價
|
|||
|
up = min_path_sum_dfs_mem(grid, mem, i - 1, j)
|
|||
|
left = min_path_sum_dfs_mem(grid, mem, i, j - 1)
|
|||
|
# 記錄並返回左上角到 (i, j) 的最小路徑代價
|
|||
|
mem[i][j] = min(left, up) + grid[i][j]
|
|||
|
return mem[i][j]
|
|||
|
```
|
|||
|
|
|||
|
=== "C++"
|
|||
|
|
|||
|
```cpp title="min_path_sum.cpp"
|
|||
|
/* 最小路徑和:記憶化搜尋 */
|
|||
|
int minPathSumDFSMem(vector<vector<int>> &grid, vector<vector<int>> &mem, int i, int j) {
|
|||
|
// 若為左上角單元格,則終止搜尋
|
|||
|
if (i == 0 && j == 0) {
|
|||
|
return grid[0][0];
|
|||
|
}
|
|||
|
// 若行列索引越界,則返回 +∞ 代價
|
|||
|
if (i < 0 || j < 0) {
|
|||
|
return INT_MAX;
|
|||
|
}
|
|||
|
// 若已有記錄,則直接返回
|
|||
|
if (mem[i][j] != -1) {
|
|||
|
return mem[i][j];
|
|||
|
}
|
|||
|
// 左邊和上邊單元格的最小路徑代價
|
|||
|
int up = minPathSumDFSMem(grid, mem, i - 1, j);
|
|||
|
int left = minPathSumDFSMem(grid, mem, i, j - 1);
|
|||
|
// 記錄並返回左上角到 (i, j) 的最小路徑代價
|
|||
|
mem[i][j] = min(left, up) != INT_MAX ? min(left, up) + grid[i][j] : INT_MAX;
|
|||
|
return mem[i][j];
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "Java"
|
|||
|
|
|||
|
```java title="min_path_sum.java"
|
|||
|
/* 最小路徑和:記憶化搜尋 */
|
|||
|
int minPathSumDFSMem(int[][] grid, int[][] mem, int i, int j) {
|
|||
|
// 若為左上角單元格,則終止搜尋
|
|||
|
if (i == 0 && j == 0) {
|
|||
|
return grid[0][0];
|
|||
|
}
|
|||
|
// 若行列索引越界,則返回 +∞ 代價
|
|||
|
if (i < 0 || j < 0) {
|
|||
|
return Integer.MAX_VALUE;
|
|||
|
}
|
|||
|
// 若已有記錄,則直接返回
|
|||
|
if (mem[i][j] != -1) {
|
|||
|
return mem[i][j];
|
|||
|
}
|
|||
|
// 左邊和上邊單元格的最小路徑代價
|
|||
|
int up = minPathSumDFSMem(grid, mem, i - 1, j);
|
|||
|
int left = minPathSumDFSMem(grid, mem, i, j - 1);
|
|||
|
// 記錄並返回左上角到 (i, j) 的最小路徑代價
|
|||
|
mem[i][j] = Math.min(left, up) + grid[i][j];
|
|||
|
return mem[i][j];
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "C#"
|
|||
|
|
|||
|
```csharp title="min_path_sum.cs"
|
|||
|
/* 最小路徑和:記憶化搜尋 */
|
|||
|
int MinPathSumDFSMem(int[][] grid, int[][] mem, int i, int j) {
|
|||
|
// 若為左上角單元格,則終止搜尋
|
|||
|
if (i == 0 && j == 0) {
|
|||
|
return grid[0][0];
|
|||
|
}
|
|||
|
// 若行列索引越界,則返回 +∞ 代價
|
|||
|
if (i < 0 || j < 0) {
|
|||
|
return int.MaxValue;
|
|||
|
}
|
|||
|
// 若已有記錄,則直接返回
|
|||
|
if (mem[i][j] != -1) {
|
|||
|
return mem[i][j];
|
|||
|
}
|
|||
|
// 左邊和上邊單元格的最小路徑代價
|
|||
|
int up = MinPathSumDFSMem(grid, mem, i - 1, j);
|
|||
|
int left = MinPathSumDFSMem(grid, mem, i, j - 1);
|
|||
|
// 記錄並返回左上角到 (i, j) 的最小路徑代價
|
|||
|
mem[i][j] = Math.Min(left, up) + grid[i][j];
|
|||
|
return mem[i][j];
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "Go"
|
|||
|
|
|||
|
```go title="min_path_sum.go"
|
|||
|
/* 最小路徑和:記憶化搜尋 */
|
|||
|
func minPathSumDFSMem(grid, mem [][]int, i, j int) int {
|
|||
|
// 若為左上角單元格,則終止搜尋
|
|||
|
if i == 0 && j == 0 {
|
|||
|
return grid[0][0]
|
|||
|
}
|
|||
|
// 若行列索引越界,則返回 +∞ 代價
|
|||
|
if i < 0 || j < 0 {
|
|||
|
return math.MaxInt
|
|||
|
}
|
|||
|
// 若已有記錄,則直接返回
|
|||
|
if mem[i][j] != -1 {
|
|||
|
return mem[i][j]
|
|||
|
}
|
|||
|
// 左邊和上邊單元格的最小路徑代價
|
|||
|
up := minPathSumDFSMem(grid, mem, i-1, j)
|
|||
|
left := minPathSumDFSMem(grid, mem, i, j-1)
|
|||
|
// 記錄並返回左上角到 (i, j) 的最小路徑代價
|
|||
|
mem[i][j] = int(math.Min(float64(left), float64(up))) + grid[i][j]
|
|||
|
return mem[i][j]
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "Swift"
|
|||
|
|
|||
|
```swift title="min_path_sum.swift"
|
|||
|
/* 最小路徑和:記憶化搜尋 */
|
|||
|
func minPathSumDFSMem(grid: [[Int]], mem: inout [[Int]], i: Int, j: Int) -> Int {
|
|||
|
// 若為左上角單元格,則終止搜尋
|
|||
|
if i == 0, j == 0 {
|
|||
|
return grid[0][0]
|
|||
|
}
|
|||
|
// 若行列索引越界,則返回 +∞ 代價
|
|||
|
if i < 0 || j < 0 {
|
|||
|
return .max
|
|||
|
}
|
|||
|
// 若已有記錄,則直接返回
|
|||
|
if mem[i][j] != -1 {
|
|||
|
return mem[i][j]
|
|||
|
}
|
|||
|
// 左邊和上邊單元格的最小路徑代價
|
|||
|
let up = minPathSumDFSMem(grid: grid, mem: &mem, i: i - 1, j: j)
|
|||
|
let left = minPathSumDFSMem(grid: grid, mem: &mem, i: i, j: j - 1)
|
|||
|
// 記錄並返回左上角到 (i, j) 的最小路徑代價
|
|||
|
mem[i][j] = min(left, up) + grid[i][j]
|
|||
|
return mem[i][j]
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "JS"
|
|||
|
|
|||
|
```javascript title="min_path_sum.js"
|
|||
|
/* 最小路徑和:記憶化搜尋 */
|
|||
|
function minPathSumDFSMem(grid, mem, i, j) {
|
|||
|
// 若為左上角單元格,則終止搜尋
|
|||
|
if (i === 0 && j === 0) {
|
|||
|
return grid[0][0];
|
|||
|
}
|
|||
|
// 若行列索引越界,則返回 +∞ 代價
|
|||
|
if (i < 0 || j < 0) {
|
|||
|
return Infinity;
|
|||
|
}
|
|||
|
// 若已有記錄,則直接返回
|
|||
|
if (mem[i][j] !== -1) {
|
|||
|
return mem[i][j];
|
|||
|
}
|
|||
|
// 左邊和上邊單元格的最小路徑代價
|
|||
|
const up = minPathSumDFSMem(grid, mem, i - 1, j);
|
|||
|
const left = minPathSumDFSMem(grid, mem, i, j - 1);
|
|||
|
// 記錄並返回左上角到 (i, j) 的最小路徑代價
|
|||
|
mem[i][j] = Math.min(left, up) + grid[i][j];
|
|||
|
return mem[i][j];
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "TS"
|
|||
|
|
|||
|
```typescript title="min_path_sum.ts"
|
|||
|
/* 最小路徑和:記憶化搜尋 */
|
|||
|
function minPathSumDFSMem(
|
|||
|
grid: Array<Array<number>>,
|
|||
|
mem: Array<Array<number>>,
|
|||
|
i: number,
|
|||
|
j: number
|
|||
|
): number {
|
|||
|
// 若為左上角單元格,則終止搜尋
|
|||
|
if (i === 0 && j === 0) {
|
|||
|
return grid[0][0];
|
|||
|
}
|
|||
|
// 若行列索引越界,則返回 +∞ 代價
|
|||
|
if (i < 0 || j < 0) {
|
|||
|
return Infinity;
|
|||
|
}
|
|||
|
// 若已有記錄,則直接返回
|
|||
|
if (mem[i][j] != -1) {
|
|||
|
return mem[i][j];
|
|||
|
}
|
|||
|
// 左邊和上邊單元格的最小路徑代價
|
|||
|
const up = minPathSumDFSMem(grid, mem, i - 1, j);
|
|||
|
const left = minPathSumDFSMem(grid, mem, i, j - 1);
|
|||
|
// 記錄並返回左上角到 (i, j) 的最小路徑代價
|
|||
|
mem[i][j] = Math.min(left, up) + grid[i][j];
|
|||
|
return mem[i][j];
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "Dart"
|
|||
|
|
|||
|
```dart title="min_path_sum.dart"
|
|||
|
/* 最小路徑和:記憶化搜尋 */
|
|||
|
int minPathSumDFSMem(List<List<int>> grid, List<List<int>> mem, int i, int j) {
|
|||
|
// 若為左上角單元格,則終止搜尋
|
|||
|
if (i == 0 && j == 0) {
|
|||
|
return grid[0][0];
|
|||
|
}
|
|||
|
// 若行列索引越界,則返回 +∞ 代價
|
|||
|
if (i < 0 || j < 0) {
|
|||
|
// 在 Dart 中,int 型別是固定範圍的整數,不存在表示“無窮大”的值
|
|||
|
return BigInt.from(2).pow(31).toInt();
|
|||
|
}
|
|||
|
// 若已有記錄,則直接返回
|
|||
|
if (mem[i][j] != -1) {
|
|||
|
return mem[i][j];
|
|||
|
}
|
|||
|
// 左邊和上邊單元格的最小路徑代價
|
|||
|
int up = minPathSumDFSMem(grid, mem, i - 1, j);
|
|||
|
int left = minPathSumDFSMem(grid, mem, i, j - 1);
|
|||
|
// 記錄並返回左上角到 (i, j) 的最小路徑代價
|
|||
|
mem[i][j] = min(left, up) + grid[i][j];
|
|||
|
return mem[i][j];
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "Rust"
|
|||
|
|
|||
|
```rust title="min_path_sum.rs"
|
|||
|
/* 最小路徑和:記憶化搜尋 */
|
|||
|
fn min_path_sum_dfs_mem(grid: &Vec<Vec<i32>>, mem: &mut Vec<Vec<i32>>, i: i32, j: i32) -> i32 {
|
|||
|
// 若為左上角單元格,則終止搜尋
|
|||
|
if i == 0 && j == 0 {
|
|||
|
return grid[0][0];
|
|||
|
}
|
|||
|
// 若行列索引越界,則返回 +∞ 代價
|
|||
|
if i < 0 || j < 0 {
|
|||
|
return i32::MAX;
|
|||
|
}
|
|||
|
// 若已有記錄,則直接返回
|
|||
|
if mem[i as usize][j as usize] != -1 {
|
|||
|
return mem[i as usize][j as usize];
|
|||
|
}
|
|||
|
// 左邊和上邊單元格的最小路徑代價
|
|||
|
let up = min_path_sum_dfs_mem(grid, mem, i - 1, j);
|
|||
|
let left = min_path_sum_dfs_mem(grid, mem, i, j - 1);
|
|||
|
// 記錄並返回左上角到 (i, j) 的最小路徑代價
|
|||
|
mem[i as usize][j as usize] = std::cmp::min(left, up) + grid[i as usize][j as usize];
|
|||
|
mem[i as usize][j as usize]
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "C"
|
|||
|
|
|||
|
```c title="min_path_sum.c"
|
|||
|
/* 最小路徑和:記憶化搜尋 */
|
|||
|
int minPathSumDFSMem(int grid[MAX_SIZE][MAX_SIZE], int mem[MAX_SIZE][MAX_SIZE], int i, int j) {
|
|||
|
// 若為左上角單元格,則終止搜尋
|
|||
|
if (i == 0 && j == 0) {
|
|||
|
return grid[0][0];
|
|||
|
}
|
|||
|
// 若行列索引越界,則返回 +∞ 代價
|
|||
|
if (i < 0 || j < 0) {
|
|||
|
return INT_MAX;
|
|||
|
}
|
|||
|
// 若已有記錄,則直接返回
|
|||
|
if (mem[i][j] != -1) {
|
|||
|
return mem[i][j];
|
|||
|
}
|
|||
|
// 左邊和上邊單元格的最小路徑代價
|
|||
|
int up = minPathSumDFSMem(grid, mem, i - 1, j);
|
|||
|
int left = minPathSumDFSMem(grid, mem, i, j - 1);
|
|||
|
// 記錄並返回左上角到 (i, j) 的最小路徑代價
|
|||
|
mem[i][j] = myMin(left, up) != INT_MAX ? myMin(left, up) + grid[i][j] : INT_MAX;
|
|||
|
return mem[i][j];
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "Kotlin"
|
|||
|
|
|||
|
```kotlin title="min_path_sum.kt"
|
|||
|
/* 最小路徑和:記憶化搜尋 */
|
|||
|
fun minPathSumDFSMem(
|
|||
|
grid: Array<Array<Int>>,
|
|||
|
mem: Array<Array<Int>>,
|
|||
|
i: Int,
|
|||
|
j: Int
|
|||
|
): Int {
|
|||
|
// 若為左上角單元格,則終止搜尋
|
|||
|
if (i == 0 && j == 0) {
|
|||
|
return grid[0][0]
|
|||
|
}
|
|||
|
// 若行列索引越界,則返回 +∞ 代價
|
|||
|
if (i < 0 || j < 0) {
|
|||
|
return Int.MAX_VALUE
|
|||
|
}
|
|||
|
// 若已有記錄,則直接返回
|
|||
|
if (mem[i][j] != -1) {
|
|||
|
return mem[i][j]
|
|||
|
}
|
|||
|
// 左邊和上邊單元格的最小路徑代價
|
|||
|
val up = minPathSumDFSMem(grid, mem, i - 1, j)
|
|||
|
val left = minPathSumDFSMem(grid, mem, i, j - 1)
|
|||
|
// 記錄並返回左上角到 (i, j) 的最小路徑代價
|
|||
|
mem[i][j] = (min(left.toDouble(), up.toDouble()) + grid[i][j]).toInt()
|
|||
|
return mem[i][j]
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "Ruby"
|
|||
|
|
|||
|
```ruby title="min_path_sum.rb"
|
|||
|
[class]{}-[func]{min_path_sum_dfs_mem}
|
|||
|
```
|
|||
|
|
|||
|
=== "Zig"
|
|||
|
|
|||
|
```zig title="min_path_sum.zig"
|
|||
|
// 最小路徑和:記憶化搜尋
|
|||
|
fn minPathSumDFSMem(grid: anytype, mem: anytype, i: i32, j: i32) i32 {
|
|||
|
// 若為左上角單元格,則終止搜尋
|
|||
|
if (i == 0 and j == 0) {
|
|||
|
return grid[0][0];
|
|||
|
}
|
|||
|
// 若行列索引越界,則返回 +∞ 代價
|
|||
|
if (i < 0 or j < 0) {
|
|||
|
return std.math.maxInt(i32);
|
|||
|
}
|
|||
|
// 若已有記錄,則直接返回
|
|||
|
if (mem[@as(usize, @intCast(i))][@as(usize, @intCast(j))] != -1) {
|
|||
|
return mem[@as(usize, @intCast(i))][@as(usize, @intCast(j))];
|
|||
|
}
|
|||
|
// 計算從左上角到 (i-1, j) 和 (i, j-1) 的最小路徑代價
|
|||
|
var up = minPathSumDFSMem(grid, mem, i - 1, j);
|
|||
|
var left = minPathSumDFSMem(grid, mem, i, j - 1);
|
|||
|
// 返回從左上角到 (i, j) 的最小路徑代價
|
|||
|
// 記錄並返回左上角到 (i, j) 的最小路徑代價
|
|||
|
mem[@as(usize, @intCast(i))][@as(usize, @intCast(j))] = @min(left, up) + grid[@as(usize, @intCast(i))][@as(usize, @intCast(j))];
|
|||
|
return mem[@as(usize, @intCast(i))][@as(usize, @intCast(j))];
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
??? pythontutor "視覺化執行"
|
|||
|
|
|||
|
<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=from%20math%20import%20inf%0A%0Adef%20min_path_sum_dfs_mem%28%0A%20%20%20%20grid%3A%20list%5Blist%5Bint%5D%5D,%20mem%3A%20list%5Blist%5Bint%5D%5D,%20i%3A%20int,%20j%3A%20int%0A%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E6%9C%80%E5%B0%8F%E8%B7%AF%E5%BE%84%E5%92%8C%EF%BC%9A%E8%AE%B0%E5%BF%86%E5%8C%96%E6%90%9C%E7%B4%A2%22%22%22%0A%20%20%20%20%23%20%E8%8B%A5%E4%B8%BA%E5%B7%A6%E4%B8%8A%E8%A7%92%E5%8D%95%E5%85%83%E6%A0%BC%EF%BC%8C%E5%88%99%E7%BB%88%E6%AD%A2%E6%90%9C%E7%B4%A2%0A%20%20%20%20if%20i%20%3D%3D%200%20and%20j%20%3D%3D%200%3A%0A%20%20%20%20%20%20%20%20return%20grid%5B0%5D%5B0%5D%0A%20%20%20%20%23%20%E8%8B%A5%E8%A1%8C%E5%88%97%E7%B4%A2%E5%BC%95%E8%B6%8A%E7%95%8C%EF%BC%8C%E5%88%99%E8%BF%94%E5%9B%9E%20%2B%E2%88%9E%20%E4%BB%A3%E4%BB%B7%0A%20%20%20%20if%20i%20%3C%200%20or%20j%20%3C%200%3A%0A%20%20%20%20%20%20%20%20return%20inf%0A%20%20%20%20%23%20%E8%8B%A5%E5%B7%B2%E6%9C%89%E8%AE%B0%E5%BD%95%EF%BC%8C%E5%88%99%E7%9B%B4%E6%8E%A5%E8%BF%94%E5%9B%9E%0A%20%20%20%20if%20mem%5Bi%5D%5Bj%5D%20!%3D%20-1%3A%0A%20%20%20%20%20%20%20%20return%20mem%5Bi%5D%5Bj%5D%0A%20%20%20%20%23%20%E5%B7%A6%E8%BE%B9%E5%92%8C%E4%B8%8A%E8%BE%B9%E5%8D%95%E5%85%83%E6%A0%BC%E7%9A%84%E6%9C%80%E5%B0%8F%E8%B7%AF%E5%BE%84%E4%BB%A3%E4%BB%B7%0A%20%20%20%20up%20%3D%20min_path_sum_dfs_mem%28grid,%20mem,%20i%20-%201,%20j%29%0A%20%20%20%20left%20%3D%20min_path_sum_dfs_mem%28grid,%20mem,%20i,%20j%20-%201%29%0A%20%20%20%20%23%20%E8%AE%B0%E5%BD%95%E5%B9%B6%E8%BF%94%E5%9B%9E%E5%B7%A6%E4%B8%8A%E8%A7%92%E5%88%B0%20%28i,%20j%29%20%E7%9A%84%E6%9C%80%E5%B0%8F%E8%B7%AF%E5%BE%84%E4%BB%A3%E4%BB%B7%0A%20%20%20%20mem%5Bi%5D%5Bj%5D%20%3D%20min%28left,%20up%29%20%2B%20grid%5Bi%5D%5Bj%5D%0A%20%20%20%20return%20mem%5Bi%5D%5Bj%5D%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20grid%20%3D%20%5B%5B1,%203,%201,%205%5D,%20%5B2,%202,%204,%202%5D,%20%5B5,%203,%202,%201%5D,%20%5B4,%203,%205,%202%5D%5D%0A%20%20%20%20n,%20m%20%3D%20len%28grid%29,%20len%28grid%5B0%5D%29%0A%0A%20%20%20%23%20%E8%AE%B0%E5%BF%86%E5%8C%96%E6%90%9C%E7%B4%A2%0A%20%20%20%20mem%20%3D%20%5B%5B-1%5D%20*%20m%20for%20_%20in%20range%28n%29%5D%0A%20%20%20%20res%20%3D%20min_path_sum_dfs_mem%28grid,%20mem,%20n%20-%201,%20m%20-%201%29%0A%20%20%20%20print%28f%22%E4%BB%8E%E5%B7%A6%E4%B8%8A%E8%A7%92%E5%88%B0%E5%8F%B3%E4%B8%8B%E8%A7%92%E7%9A%84%E5%81%9A%E5%B0%8F%E8%B7%AF%E5%BE%84%E5%92%8C%E4%B8%BA%20%7Bres%7D%22%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=16&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
|||
|
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=from%20math%20import%20inf%0A%0Adef%20min_path_sum_dfs_mem%28%0A%20%20%20%20grid%3A%20list%5Blist%5Bint%5D%5D,%20mem%3A%20list%5Blist%5Bint%5D%5D,%20i%3A%20int,%20j%3A%20int%0A%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E6%9C%80%E5%B0%8F%E8%B7%AF%E5%BE%84%E5%92%8C%EF%BC%9A%E8%AE%B0%E5%BF%86%E5%8C%96%E6%90%9C%E7%B4%A2%22%22%22%0A%20%20%20%20%23%20%E8%8B%A5%E4%B8%BA%E5%B7%A6%E4%B8%8A%E8%A7%92%E5%8D%95%E5%85%83%E6%A0%BC%EF%BC%8C%E5%88%99%E7%BB%88%E6%AD%A2%E6%90%9C%E7%B4%A2%0A%20%20%20%20if%20i%20%3D%3D%200%20and%20j%20%3D%3D%200%3A%0A%20%20%20%20%20%20%20%20return%20grid%5B0%5D%5B0%5D%0A%20%20%20%20%23%20%E8%8B%A5%E8%A1%8C%E5%88%97%E7%B4%A2%E5%BC%95%E8%B6%8A%E7%95%8C%EF%BC%8C%E5%88%99%E8%BF%94%E5%9B%9E%20%2B%E2%88%9E%20%E4%BB%A3%E4%BB%B7%0A%20%20%20%20if%20i%20%3C%200%20or%20j%20%3C%200%3A%0A%20%20%20%20%20%20%20%20return%20inf%0A%20%20%20%20%23%20%E8%8B%A5%E5%B7%B2%E6%9C%89%E8%AE%B0%E5%BD%95%EF%BC%8C%E5%88%99%E7%9B%B4%E6%8E%A5%E8%BF%94%E5%9B%9E%0A%20%20%20%20if%20mem%5Bi%5D%5Bj%5D%20!%3D%20-1%3A%0A%20%20%20%20%20%20%20%20return%20mem%5Bi%5D%5Bj%5D%0A%20%20%20%20%23%20%E5%B7%A6%E8%BE%B9%E5%92%8C%E4%B8%8A%E8%BE%B9%E5%8D%95%E5%85%83%E6%A0%BC%E7%9A%84%E6%9C%80%E5%B0%8F%E8%B7%AF%E5%BE%84%E4%BB%A3%E4%BB%B7%0A%20%20%20%20up%20%3D%20min_path_sum_dfs_mem%28grid,%20mem,%20i%20-%201,%20j%29%0A%20%20%20%20left%20%3D%20min_path_sum_dfs_mem%28grid,%20mem,%20i,%20j%20-%201%29%0A%20%20%20%20%23%20%E8%AE%B0%E5%BD%95%E5%B9%B6%E8%BF%94%E5%9B%9E%E5%B7%A6%E4%B8%8A%E8%A7%92%E5%88%B0%20%28i,%20j%29%20%E7%9A%84%E6%9C%80%E5%B0%8F%E8%B7%AF%E5%BE%84%E4%BB%A3%E4%BB%B7%0A%20%20%20%20mem%5Bi%5D%5Bj%5D%20%3D%20min%28left,%20up%29%20%2B%20grid%5Bi%5D%5Bj%5D%0A%20%20%20%20return%20mem%5Bi%5D%5Bj%5D%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20grid%20%3D%20%5B%5B1,%203,%201,%205%5D,%20%5B2,%202,%204,%202%5D,%20%5B5,%203,%202,%201%5D,%20%5B4,%203,%205,%202%5D%5D%0A%20%20%20%20n,%20m%20%3D%20len%28grid%29,%20len%28grid%5B0%5D%29%0A%0A%20%20%20%23%20%E8%AE%B0%E5%BF%86%E5%8C%96%E6%90%9C%E7%B4%A2%0A%20%20%20%20mem%20%3D%20%5B%5B-1%5D%20*%20m%20for%20_%20in%20range%28n%29%5D%0A%20%20%20%20res%20%3D%20min_path_sum_dfs_mem%28grid,%20mem,%20n%20-%201,%20m%20-%201%29%0A%20%20%20%20print%28f%22%E4%BB%8E%E5%B7%A6%E4%B8%8A%E8%A7%92%E5%88%B0%E5%8F%B3%E4%B8%8B%E8%A7%92%E7%9A%84%E5%81%9A%E5%B0%8F%E8%B7%AF%E5%BE%84%E5%92%8C%E4%B8%BA%20%7Bres%7D%22%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=16&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
|
|||
|
|
|||
|
如圖 14-15 所示,在引入記憶化後,所有子問題的解只需計算一次,因此時間複雜度取決於狀態總數,即網格尺寸 $O(nm)$ 。
|
|||
|
|
|||
|
![記憶化搜尋遞迴樹](dp_solution_pipeline.assets/min_path_sum_dfs_mem.png){ class="animation-figure" }
|
|||
|
|
|||
|
<p align="center"> 圖 14-15 記憶化搜尋遞迴樹 </p>
|
|||
|
|
|||
|
### 3. 方法三:動態規劃
|
|||
|
|
|||
|
基於迭代實現動態規劃解法,程式碼如下所示:
|
|||
|
|
|||
|
=== "Python"
|
|||
|
|
|||
|
```python title="min_path_sum.py"
|
|||
|
def min_path_sum_dp(grid: list[list[int]]) -> int:
|
|||
|
"""最小路徑和:動態規劃"""
|
|||
|
n, m = len(grid), len(grid[0])
|
|||
|
# 初始化 dp 表
|
|||
|
dp = [[0] * m for _ in range(n)]
|
|||
|
dp[0][0] = grid[0][0]
|
|||
|
# 狀態轉移:首行
|
|||
|
for j in range(1, m):
|
|||
|
dp[0][j] = dp[0][j - 1] + grid[0][j]
|
|||
|
# 狀態轉移:首列
|
|||
|
for i in range(1, n):
|
|||
|
dp[i][0] = dp[i - 1][0] + grid[i][0]
|
|||
|
# 狀態轉移:其餘行和列
|
|||
|
for i in range(1, n):
|
|||
|
for j in range(1, m):
|
|||
|
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j]
|
|||
|
return dp[n - 1][m - 1]
|
|||
|
```
|
|||
|
|
|||
|
=== "C++"
|
|||
|
|
|||
|
```cpp title="min_path_sum.cpp"
|
|||
|
/* 最小路徑和:動態規劃 */
|
|||
|
int minPathSumDP(vector<vector<int>> &grid) {
|
|||
|
int n = grid.size(), m = grid[0].size();
|
|||
|
// 初始化 dp 表
|
|||
|
vector<vector<int>> dp(n, vector<int>(m));
|
|||
|
dp[0][0] = grid[0][0];
|
|||
|
// 狀態轉移:首行
|
|||
|
for (int j = 1; j < m; j++) {
|
|||
|
dp[0][j] = dp[0][j - 1] + grid[0][j];
|
|||
|
}
|
|||
|
// 狀態轉移:首列
|
|||
|
for (int i = 1; i < n; i++) {
|
|||
|
dp[i][0] = dp[i - 1][0] + grid[i][0];
|
|||
|
}
|
|||
|
// 狀態轉移:其餘行和列
|
|||
|
for (int i = 1; i < n; i++) {
|
|||
|
for (int j = 1; j < m; j++) {
|
|||
|
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
|
|||
|
}
|
|||
|
}
|
|||
|
return dp[n - 1][m - 1];
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "Java"
|
|||
|
|
|||
|
```java title="min_path_sum.java"
|
|||
|
/* 最小路徑和:動態規劃 */
|
|||
|
int minPathSumDP(int[][] grid) {
|
|||
|
int n = grid.length, m = grid[0].length;
|
|||
|
// 初始化 dp 表
|
|||
|
int[][] dp = new int[n][m];
|
|||
|
dp[0][0] = grid[0][0];
|
|||
|
// 狀態轉移:首行
|
|||
|
for (int j = 1; j < m; j++) {
|
|||
|
dp[0][j] = dp[0][j - 1] + grid[0][j];
|
|||
|
}
|
|||
|
// 狀態轉移:首列
|
|||
|
for (int i = 1; i < n; i++) {
|
|||
|
dp[i][0] = dp[i - 1][0] + grid[i][0];
|
|||
|
}
|
|||
|
// 狀態轉移:其餘行和列
|
|||
|
for (int i = 1; i < n; i++) {
|
|||
|
for (int j = 1; j < m; j++) {
|
|||
|
dp[i][j] = Math.min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
|
|||
|
}
|
|||
|
}
|
|||
|
return dp[n - 1][m - 1];
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "C#"
|
|||
|
|
|||
|
```csharp title="min_path_sum.cs"
|
|||
|
/* 最小路徑和:動態規劃 */
|
|||
|
int MinPathSumDP(int[][] grid) {
|
|||
|
int n = grid.Length, m = grid[0].Length;
|
|||
|
// 初始化 dp 表
|
|||
|
int[,] dp = new int[n, m];
|
|||
|
dp[0, 0] = grid[0][0];
|
|||
|
// 狀態轉移:首行
|
|||
|
for (int j = 1; j < m; j++) {
|
|||
|
dp[0, j] = dp[0, j - 1] + grid[0][j];
|
|||
|
}
|
|||
|
// 狀態轉移:首列
|
|||
|
for (int i = 1; i < n; i++) {
|
|||
|
dp[i, 0] = dp[i - 1, 0] + grid[i][0];
|
|||
|
}
|
|||
|
// 狀態轉移:其餘行和列
|
|||
|
for (int i = 1; i < n; i++) {
|
|||
|
for (int j = 1; j < m; j++) {
|
|||
|
dp[i, j] = Math.Min(dp[i, j - 1], dp[i - 1, j]) + grid[i][j];
|
|||
|
}
|
|||
|
}
|
|||
|
return dp[n - 1, m - 1];
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "Go"
|
|||
|
|
|||
|
```go title="min_path_sum.go"
|
|||
|
/* 最小路徑和:動態規劃 */
|
|||
|
func minPathSumDP(grid [][]int) int {
|
|||
|
n, m := len(grid), len(grid[0])
|
|||
|
// 初始化 dp 表
|
|||
|
dp := make([][]int, n)
|
|||
|
for i := 0; i < n; i++ {
|
|||
|
dp[i] = make([]int, m)
|
|||
|
}
|
|||
|
dp[0][0] = grid[0][0]
|
|||
|
// 狀態轉移:首行
|
|||
|
for j := 1; j < m; j++ {
|
|||
|
dp[0][j] = dp[0][j-1] + grid[0][j]
|
|||
|
}
|
|||
|
// 狀態轉移:首列
|
|||
|
for i := 1; i < n; i++ {
|
|||
|
dp[i][0] = dp[i-1][0] + grid[i][0]
|
|||
|
}
|
|||
|
// 狀態轉移:其餘行和列
|
|||
|
for i := 1; i < n; i++ {
|
|||
|
for j := 1; j < m; j++ {
|
|||
|
dp[i][j] = int(math.Min(float64(dp[i][j-1]), float64(dp[i-1][j]))) + grid[i][j]
|
|||
|
}
|
|||
|
}
|
|||
|
return dp[n-1][m-1]
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "Swift"
|
|||
|
|
|||
|
```swift title="min_path_sum.swift"
|
|||
|
/* 最小路徑和:動態規劃 */
|
|||
|
func minPathSumDP(grid: [[Int]]) -> Int {
|
|||
|
let n = grid.count
|
|||
|
let m = grid[0].count
|
|||
|
// 初始化 dp 表
|
|||
|
var dp = Array(repeating: Array(repeating: 0, count: m), count: n)
|
|||
|
dp[0][0] = grid[0][0]
|
|||
|
// 狀態轉移:首行
|
|||
|
for j in 1 ..< m {
|
|||
|
dp[0][j] = dp[0][j - 1] + grid[0][j]
|
|||
|
}
|
|||
|
// 狀態轉移:首列
|
|||
|
for i in 1 ..< n {
|
|||
|
dp[i][0] = dp[i - 1][0] + grid[i][0]
|
|||
|
}
|
|||
|
// 狀態轉移:其餘行和列
|
|||
|
for i in 1 ..< n {
|
|||
|
for j in 1 ..< m {
|
|||
|
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j]
|
|||
|
}
|
|||
|
}
|
|||
|
return dp[n - 1][m - 1]
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "JS"
|
|||
|
|
|||
|
```javascript title="min_path_sum.js"
|
|||
|
/* 最小路徑和:動態規劃 */
|
|||
|
function minPathSumDP(grid) {
|
|||
|
const n = grid.length,
|
|||
|
m = grid[0].length;
|
|||
|
// 初始化 dp 表
|
|||
|
const dp = Array.from({ length: n }, () =>
|
|||
|
Array.from({ length: m }, () => 0)
|
|||
|
);
|
|||
|
dp[0][0] = grid[0][0];
|
|||
|
// 狀態轉移:首行
|
|||
|
for (let j = 1; j < m; j++) {
|
|||
|
dp[0][j] = dp[0][j - 1] + grid[0][j];
|
|||
|
}
|
|||
|
// 狀態轉移:首列
|
|||
|
for (let i = 1; i < n; i++) {
|
|||
|
dp[i][0] = dp[i - 1][0] + grid[i][0];
|
|||
|
}
|
|||
|
// 狀態轉移:其餘行和列
|
|||
|
for (let i = 1; i < n; i++) {
|
|||
|
for (let j = 1; j < m; j++) {
|
|||
|
dp[i][j] = Math.min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
|
|||
|
}
|
|||
|
}
|
|||
|
return dp[n - 1][m - 1];
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "TS"
|
|||
|
|
|||
|
```typescript title="min_path_sum.ts"
|
|||
|
/* 最小路徑和:動態規劃 */
|
|||
|
function minPathSumDP(grid: Array<Array<number>>): number {
|
|||
|
const n = grid.length,
|
|||
|
m = grid[0].length;
|
|||
|
// 初始化 dp 表
|
|||
|
const dp = Array.from({ length: n }, () =>
|
|||
|
Array.from({ length: m }, () => 0)
|
|||
|
);
|
|||
|
dp[0][0] = grid[0][0];
|
|||
|
// 狀態轉移:首行
|
|||
|
for (let j = 1; j < m; j++) {
|
|||
|
dp[0][j] = dp[0][j - 1] + grid[0][j];
|
|||
|
}
|
|||
|
// 狀態轉移:首列
|
|||
|
for (let i = 1; i < n; i++) {
|
|||
|
dp[i][0] = dp[i - 1][0] + grid[i][0];
|
|||
|
}
|
|||
|
// 狀態轉移:其餘行和列
|
|||
|
for (let i = 1; i < n; i++) {
|
|||
|
for (let j: number = 1; j < m; j++) {
|
|||
|
dp[i][j] = Math.min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
|
|||
|
}
|
|||
|
}
|
|||
|
return dp[n - 1][m - 1];
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "Dart"
|
|||
|
|
|||
|
```dart title="min_path_sum.dart"
|
|||
|
/* 最小路徑和:動態規劃 */
|
|||
|
int minPathSumDP(List<List<int>> grid) {
|
|||
|
int n = grid.length, m = grid[0].length;
|
|||
|
// 初始化 dp 表
|
|||
|
List<List<int>> dp = List.generate(n, (i) => List.filled(m, 0));
|
|||
|
dp[0][0] = grid[0][0];
|
|||
|
// 狀態轉移:首行
|
|||
|
for (int j = 1; j < m; j++) {
|
|||
|
dp[0][j] = dp[0][j - 1] + grid[0][j];
|
|||
|
}
|
|||
|
// 狀態轉移:首列
|
|||
|
for (int i = 1; i < n; i++) {
|
|||
|
dp[i][0] = dp[i - 1][0] + grid[i][0];
|
|||
|
}
|
|||
|
// 狀態轉移:其餘行和列
|
|||
|
for (int i = 1; i < n; i++) {
|
|||
|
for (int j = 1; j < m; j++) {
|
|||
|
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
|
|||
|
}
|
|||
|
}
|
|||
|
return dp[n - 1][m - 1];
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "Rust"
|
|||
|
|
|||
|
```rust title="min_path_sum.rs"
|
|||
|
/* 最小路徑和:動態規劃 */
|
|||
|
fn min_path_sum_dp(grid: &Vec<Vec<i32>>) -> i32 {
|
|||
|
let (n, m) = (grid.len(), grid[0].len());
|
|||
|
// 初始化 dp 表
|
|||
|
let mut dp = vec![vec![0; m]; n];
|
|||
|
dp[0][0] = grid[0][0];
|
|||
|
// 狀態轉移:首行
|
|||
|
for j in 1..m {
|
|||
|
dp[0][j] = dp[0][j - 1] + grid[0][j];
|
|||
|
}
|
|||
|
// 狀態轉移:首列
|
|||
|
for i in 1..n {
|
|||
|
dp[i][0] = dp[i - 1][0] + grid[i][0];
|
|||
|
}
|
|||
|
// 狀態轉移:其餘行和列
|
|||
|
for i in 1..n {
|
|||
|
for j in 1..m {
|
|||
|
dp[i][j] = std::cmp::min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
|
|||
|
}
|
|||
|
}
|
|||
|
dp[n - 1][m - 1]
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "C"
|
|||
|
|
|||
|
```c title="min_path_sum.c"
|
|||
|
/* 最小路徑和:動態規劃 */
|
|||
|
int minPathSumDP(int grid[MAX_SIZE][MAX_SIZE], int n, int m) {
|
|||
|
// 初始化 dp 表
|
|||
|
int **dp = malloc(n * sizeof(int *));
|
|||
|
for (int i = 0; i < n; i++) {
|
|||
|
dp[i] = calloc(m, sizeof(int));
|
|||
|
}
|
|||
|
dp[0][0] = grid[0][0];
|
|||
|
// 狀態轉移:首行
|
|||
|
for (int j = 1; j < m; j++) {
|
|||
|
dp[0][j] = dp[0][j - 1] + grid[0][j];
|
|||
|
}
|
|||
|
// 狀態轉移:首列
|
|||
|
for (int i = 1; i < n; i++) {
|
|||
|
dp[i][0] = dp[i - 1][0] + grid[i][0];
|
|||
|
}
|
|||
|
// 狀態轉移:其餘行和列
|
|||
|
for (int i = 1; i < n; i++) {
|
|||
|
for (int j = 1; j < m; j++) {
|
|||
|
dp[i][j] = myMin(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
|
|||
|
}
|
|||
|
}
|
|||
|
int res = dp[n - 1][m - 1];
|
|||
|
// 釋放記憶體
|
|||
|
for (int i = 0; i < n; i++) {
|
|||
|
free(dp[i]);
|
|||
|
}
|
|||
|
return res;
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "Kotlin"
|
|||
|
|
|||
|
```kotlin title="min_path_sum.kt"
|
|||
|
/* 最小路徑和:動態規劃 */
|
|||
|
fun minPathSumDP(grid: Array<Array<Int>>): Int {
|
|||
|
val n = grid.size
|
|||
|
val m = grid[0].size
|
|||
|
// 初始化 dp 表
|
|||
|
val dp = Array(n) { IntArray(m) }
|
|||
|
dp[0][0] = grid[0][0]
|
|||
|
// 狀態轉移:首行
|
|||
|
for (j in 1..<m) {
|
|||
|
dp[0][j] = dp[0][j - 1] + grid[0][j]
|
|||
|
}
|
|||
|
// 狀態轉移:首列
|
|||
|
for (i in 1..<n) {
|
|||
|
dp[i][0] = dp[i - 1][0] + grid[i][0]
|
|||
|
}
|
|||
|
// 狀態轉移:其餘行和列
|
|||
|
for (i in 1..<n) {
|
|||
|
for (j in 1..<m) {
|
|||
|
dp[i][j] =
|
|||
|
(min(dp[i][j - 1].toDouble(), dp[i - 1][j].toDouble()) + grid[i][j]).toInt()
|
|||
|
}
|
|||
|
}
|
|||
|
return dp[n - 1][m - 1]
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "Ruby"
|
|||
|
|
|||
|
```ruby title="min_path_sum.rb"
|
|||
|
[class]{}-[func]{min_path_sum_dp}
|
|||
|
```
|
|||
|
|
|||
|
=== "Zig"
|
|||
|
|
|||
|
```zig title="min_path_sum.zig"
|
|||
|
// 最小路徑和:動態規劃
|
|||
|
fn minPathSumDP(comptime grid: anytype) i32 {
|
|||
|
comptime var n = grid.len;
|
|||
|
comptime var m = grid[0].len;
|
|||
|
// 初始化 dp 表
|
|||
|
var dp = [_][m]i32{[_]i32{0} ** m} ** n;
|
|||
|
dp[0][0] = grid[0][0];
|
|||
|
// 狀態轉移:首行
|
|||
|
for (1..m) |j| {
|
|||
|
dp[0][j] = dp[0][j - 1] + grid[0][j];
|
|||
|
}
|
|||
|
// 狀態轉移:首列
|
|||
|
for (1..n) |i| {
|
|||
|
dp[i][0] = dp[i - 1][0] + grid[i][0];
|
|||
|
}
|
|||
|
// 狀態轉移:其餘行和列
|
|||
|
for (1..n) |i| {
|
|||
|
for (1..m) |j| {
|
|||
|
dp[i][j] = @min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
|
|||
|
}
|
|||
|
}
|
|||
|
return dp[n - 1][m - 1];
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
??? pythontutor "視覺化執行"
|
|||
|
|
|||
|
<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=from%20math%20import%20inf%0A%0Adef%20min_path_sum_dp%28grid%3A%20list%5Blist%5Bint%5D%5D%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E6%9C%80%E5%B0%8F%E8%B7%AF%E5%BE%84%E5%92%8C%EF%BC%9A%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%22%22%22%0A%20%20%20%20n,%20m%20%3D%20len%28grid%29,%20len%28grid%5B0%5D%29%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%20dp%20%E8%A1%A8%0A%20%20%20%20dp%20%3D%20%5B%5B0%5D%20*%20m%20for%20_%20in%20range%28n%29%5D%0A%20%20%20%20dp%5B0%5D%5B0%5D%20%3D%20grid%5B0%5D%5B0%5D%0A%20%20%20%20%23%20%E7%8A%B6%E6%80%81%E8%BD%AC%E7%A7%BB%EF%BC%9A%E9%A6%96%E8%A1%8C%0A%20%20%20%20for%20j%20in%20range%281,%20m%29%3A%0A%20%20%20%20%20%20%20%20dp%5B0%5D%5Bj%5D%20%3D%20dp%5B0%5D%5Bj%20-%201%5D%20%2B%20grid%5B0%5D%5Bj%5D%0A%20%20%20%20%23%20%E7%8A%B6%E6%80%81%E8%BD%AC%E7%A7%BB%EF%BC%9A%E9%A6%96%E5%88%97%0A%20%20%20%20for%20i%20in%20range%281,%20n%29%3A%0A%20%20%20%20%20%20%20%20dp%5Bi%5D%5B0%5D%20%3D%20dp%5Bi%20-%201%5D%5B0%5D%20%2B%20grid%5Bi%5D%5B0%5D%0A%20%20%20%20%23%20%E7%8A%B6%E6%80%81%E8%BD%AC%E7%A7%BB%EF%BC%9A%E5%85%B6%E4%BD%99%E8%A1%8C%E5%92%8C%E5%88%97%0A%20%20%20%20for%20i%20in%20range%281,%20n%29%3A%0A%20%20%20%20%20%20%20%20for%20j%20in%20range%281,%20m%29%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20dp%5Bi%5D%5Bj%5D%20%3D%20min%28dp%5Bi%5D%5Bj%20-%201%5D,%20dp%5Bi%20-%201%5D%5Bj%5D%29%20%2B%20grid%5Bi%5D%5Bj%5D%0A%20%20%20%20return%20dp%5Bn%20-%201%5D%5Bm%20-%201%5D%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20grid%20%3D%20%5B%5B1,%203,%201,%205%5D,%20%5B2,%202,%204,%202%5D,%20%5B5,%203,%202,%201%5D,%20%5B4,%203,%205,%202%5D%5D%0A%20%20%20%20n,%20m%20%3D%20len%28grid%29,%20len%28grid%5B0%5D%29%0A%0A%20%20%20%20%23%20%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%0A%20%20%20%20res%20%3D%20min_path_sum_dp%28grid%29%0A%20%20%20%20print%28f%22%E4%BB%8E%E5%B7%A6%E4%B8%8A%E8%A7%92%E5%88%B0%E5%8F%B3%E4%B8%8B%E8%A7%92%E7%9A%84%E5%81%9A%E5%B0%8F%E8%B7%AF%E5%BE%84%E5%92%8C%E4%B8%BA%20%7Bres%7D%22%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=6&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
|||
|
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=from%20math%20import%20inf%0A%0Adef%20min_path_sum_dp%28grid%3A%20list%5Blist%5Bint%5D%5D%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E6%9C%80%E5%B0%8F%E8%B7%AF%E5%BE%84%E5%92%8C%EF%BC%9A%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%22%22%22%0A%20%20%20%20n,%20m%20%3D%20len%28grid%29,%20len%28grid%5B0%5D%29%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%20dp%20%E8%A1%A8%0A%20%20%20%20dp%20%3D%20%5B%5B0%5D%20*%20m%20for%20_%20in%20range%28n%29%5D%0A%20%20%20%20dp%5B0%5D%5B0%5D%20%3D%20grid%5B0%5D%5B0%5D%0A%20%20%20%20%23%20%E7%8A%B6%E6%80%81%E8%BD%AC%E7%A7%BB%EF%BC%9A%E9%A6%96%E8%A1%8C%0A%20%20%20%20for%20j%20in%20range%281,%20m%29%3A%0A%20%20%20%20%20%20%20%20dp%5B0%5D%5Bj%5D%20%3D%20dp%5B0%5D%5Bj%20-%201%5D%20%2B%20grid%5B0%5D%5Bj%5D%0A%20%20%20%20%23%20%E7%8A%B6%E6%80%81%E8%BD%AC%E7%A7%BB%EF%BC%9A%E9%A6%96%E5%88%97%0A%20%20%20%20for%20i%20in%20range%281,%20n%29%3A%0A%20%20%20%20%20%20%20%20dp%5Bi%5D%5B0%5D%20%3D%20dp%5Bi%20-%201%5D%5B0%5D%20%2B%20grid%5Bi%5D%5B0%5D%0A%20%20%20%20%23%20%E7%8A%B6%E6%80%81%E8%BD%AC%E7%A7%BB%EF%BC%9A%E5%85%B6%E4%BD%99%E8%A1%8C%E5%92%8C%E5%88%97%0A%20%20%20%20for%20i%20in%20range%281,%20n%29%3A%0A%20%20%20%20%20%20%20%20for%20j%20in%20range%281,%20m%29%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20dp%5Bi%5D%5Bj%5D%20%3D%20min%28dp%5Bi%5D%5Bj%20-%201%5D,%20dp%5Bi%20-%201%5D%5Bj%5D%29%20%2B%20grid%5Bi%5D%5Bj%5D%0A%20%20%20%20return%20dp%5Bn%20-%201%5D%5Bm%20-%201%5D%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20grid%20%3D%20%5B%5B1,%203,%201,%205%5D,%20%5B2,%202,%204,%202%5D,%20%5B5,%203,%202,%201%5D,%20%5B4,%203,%205,%202%5D%5D%0A%20%20%20%20n,%20m%20%3D%20len%28grid%29,%20len%28grid%5B0%5D%29%0A%0A%20%20%20%20%23%20%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%0A%20%20%20%20res%20%3D%20min_path_sum_dp%28grid%29%0A%20%20%20%20print%28f%22%E4%BB%8E%E5%B7%A6%E4%B8%8A%E8%A7%92%E5%88%B0%E5%8F%B3%E4%B8%8B%E8%A7%92%E7%9A%84%E5%81%9A%E5%B0%8F%E8%B7%AF%E5%BE%84%E5%92%8C%E4%B8%BA%20%7Bres%7D%22%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=6&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
|
|||
|
|
|||
|
圖 14-16 展示了最小路徑和的狀態轉移過程,其走訪了整個網格,**因此時間複雜度為 $O(nm)$** 。
|
|||
|
|
|||
|
陣列 `dp` 大小為 $n \times m$ ,**因此空間複雜度為 $O(nm)$** 。
|
|||
|
|
|||
|
=== "<1>"
|
|||
|
![最小路徑和的動態規劃過程](dp_solution_pipeline.assets/min_path_sum_dp_step1.png){ class="animation-figure" }
|
|||
|
|
|||
|
=== "<2>"
|
|||
|
![min_path_sum_dp_step2](dp_solution_pipeline.assets/min_path_sum_dp_step2.png){ class="animation-figure" }
|
|||
|
|
|||
|
=== "<3>"
|
|||
|
![min_path_sum_dp_step3](dp_solution_pipeline.assets/min_path_sum_dp_step3.png){ class="animation-figure" }
|
|||
|
|
|||
|
=== "<4>"
|
|||
|
![min_path_sum_dp_step4](dp_solution_pipeline.assets/min_path_sum_dp_step4.png){ class="animation-figure" }
|
|||
|
|
|||
|
=== "<5>"
|
|||
|
![min_path_sum_dp_step5](dp_solution_pipeline.assets/min_path_sum_dp_step5.png){ class="animation-figure" }
|
|||
|
|
|||
|
=== "<6>"
|
|||
|
![min_path_sum_dp_step6](dp_solution_pipeline.assets/min_path_sum_dp_step6.png){ class="animation-figure" }
|
|||
|
|
|||
|
=== "<7>"
|
|||
|
![min_path_sum_dp_step7](dp_solution_pipeline.assets/min_path_sum_dp_step7.png){ class="animation-figure" }
|
|||
|
|
|||
|
=== "<8>"
|
|||
|
![min_path_sum_dp_step8](dp_solution_pipeline.assets/min_path_sum_dp_step8.png){ class="animation-figure" }
|
|||
|
|
|||
|
=== "<9>"
|
|||
|
![min_path_sum_dp_step9](dp_solution_pipeline.assets/min_path_sum_dp_step9.png){ class="animation-figure" }
|
|||
|
|
|||
|
=== "<10>"
|
|||
|
![min_path_sum_dp_step10](dp_solution_pipeline.assets/min_path_sum_dp_step10.png){ class="animation-figure" }
|
|||
|
|
|||
|
=== "<11>"
|
|||
|
![min_path_sum_dp_step11](dp_solution_pipeline.assets/min_path_sum_dp_step11.png){ class="animation-figure" }
|
|||
|
|
|||
|
=== "<12>"
|
|||
|
![min_path_sum_dp_step12](dp_solution_pipeline.assets/min_path_sum_dp_step12.png){ class="animation-figure" }
|
|||
|
|
|||
|
<p align="center"> 圖 14-16 最小路徑和的動態規劃過程 </p>
|
|||
|
|
|||
|
### 4. 空間最佳化
|
|||
|
|
|||
|
由於每個格子只與其左邊和上邊的格子有關,因此我們可以只用一個單行陣列來實現 $dp$ 表。
|
|||
|
|
|||
|
請注意,因為陣列 `dp` 只能表示一行的狀態,所以我們無法提前初始化首列狀態,而是在走訪每行時更新它:
|
|||
|
|
|||
|
=== "Python"
|
|||
|
|
|||
|
```python title="min_path_sum.py"
|
|||
|
def min_path_sum_dp_comp(grid: list[list[int]]) -> int:
|
|||
|
"""最小路徑和:空間最佳化後的動態規劃"""
|
|||
|
n, m = len(grid), len(grid[0])
|
|||
|
# 初始化 dp 表
|
|||
|
dp = [0] * m
|
|||
|
# 狀態轉移:首行
|
|||
|
dp[0] = grid[0][0]
|
|||
|
for j in range(1, m):
|
|||
|
dp[j] = dp[j - 1] + grid[0][j]
|
|||
|
# 狀態轉移:其餘行
|
|||
|
for i in range(1, n):
|
|||
|
# 狀態轉移:首列
|
|||
|
dp[0] = dp[0] + grid[i][0]
|
|||
|
# 狀態轉移:其餘列
|
|||
|
for j in range(1, m):
|
|||
|
dp[j] = min(dp[j - 1], dp[j]) + grid[i][j]
|
|||
|
return dp[m - 1]
|
|||
|
```
|
|||
|
|
|||
|
=== "C++"
|
|||
|
|
|||
|
```cpp title="min_path_sum.cpp"
|
|||
|
/* 最小路徑和:空間最佳化後的動態規劃 */
|
|||
|
int minPathSumDPComp(vector<vector<int>> &grid) {
|
|||
|
int n = grid.size(), m = grid[0].size();
|
|||
|
// 初始化 dp 表
|
|||
|
vector<int> dp(m);
|
|||
|
// 狀態轉移:首行
|
|||
|
dp[0] = grid[0][0];
|
|||
|
for (int j = 1; j < m; j++) {
|
|||
|
dp[j] = dp[j - 1] + grid[0][j];
|
|||
|
}
|
|||
|
// 狀態轉移:其餘行
|
|||
|
for (int i = 1; i < n; i++) {
|
|||
|
// 狀態轉移:首列
|
|||
|
dp[0] = dp[0] + grid[i][0];
|
|||
|
// 狀態轉移:其餘列
|
|||
|
for (int j = 1; j < m; j++) {
|
|||
|
dp[j] = min(dp[j - 1], dp[j]) + grid[i][j];
|
|||
|
}
|
|||
|
}
|
|||
|
return dp[m - 1];
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "Java"
|
|||
|
|
|||
|
```java title="min_path_sum.java"
|
|||
|
/* 最小路徑和:空間最佳化後的動態規劃 */
|
|||
|
int minPathSumDPComp(int[][] grid) {
|
|||
|
int n = grid.length, m = grid[0].length;
|
|||
|
// 初始化 dp 表
|
|||
|
int[] dp = new int[m];
|
|||
|
// 狀態轉移:首行
|
|||
|
dp[0] = grid[0][0];
|
|||
|
for (int j = 1; j < m; j++) {
|
|||
|
dp[j] = dp[j - 1] + grid[0][j];
|
|||
|
}
|
|||
|
// 狀態轉移:其餘行
|
|||
|
for (int i = 1; i < n; i++) {
|
|||
|
// 狀態轉移:首列
|
|||
|
dp[0] = dp[0] + grid[i][0];
|
|||
|
// 狀態轉移:其餘列
|
|||
|
for (int j = 1; j < m; j++) {
|
|||
|
dp[j] = Math.min(dp[j - 1], dp[j]) + grid[i][j];
|
|||
|
}
|
|||
|
}
|
|||
|
return dp[m - 1];
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "C#"
|
|||
|
|
|||
|
```csharp title="min_path_sum.cs"
|
|||
|
/* 最小路徑和:空間最佳化後的動態規劃 */
|
|||
|
int MinPathSumDPComp(int[][] grid) {
|
|||
|
int n = grid.Length, m = grid[0].Length;
|
|||
|
// 初始化 dp 表
|
|||
|
int[] dp = new int[m];
|
|||
|
dp[0] = grid[0][0];
|
|||
|
// 狀態轉移:首行
|
|||
|
for (int j = 1; j < m; j++) {
|
|||
|
dp[j] = dp[j - 1] + grid[0][j];
|
|||
|
}
|
|||
|
// 狀態轉移:其餘行
|
|||
|
for (int i = 1; i < n; i++) {
|
|||
|
// 狀態轉移:首列
|
|||
|
dp[0] = dp[0] + grid[i][0];
|
|||
|
// 狀態轉移:其餘列
|
|||
|
for (int j = 1; j < m; j++) {
|
|||
|
dp[j] = Math.Min(dp[j - 1], dp[j]) + grid[i][j];
|
|||
|
}
|
|||
|
}
|
|||
|
return dp[m - 1];
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "Go"
|
|||
|
|
|||
|
```go title="min_path_sum.go"
|
|||
|
/* 最小路徑和:空間最佳化後的動態規劃 */
|
|||
|
func minPathSumDPComp(grid [][]int) int {
|
|||
|
n, m := len(grid), len(grid[0])
|
|||
|
// 初始化 dp 表
|
|||
|
dp := make([]int, m)
|
|||
|
// 狀態轉移:首行
|
|||
|
dp[0] = grid[0][0]
|
|||
|
for j := 1; j < m; j++ {
|
|||
|
dp[j] = dp[j-1] + grid[0][j]
|
|||
|
}
|
|||
|
// 狀態轉移:其餘行和列
|
|||
|
for i := 1; i < n; i++ {
|
|||
|
// 狀態轉移:首列
|
|||
|
dp[0] = dp[0] + grid[i][0]
|
|||
|
// 狀態轉移:其餘列
|
|||
|
for j := 1; j < m; j++ {
|
|||
|
dp[j] = int(math.Min(float64(dp[j-1]), float64(dp[j]))) + grid[i][j]
|
|||
|
}
|
|||
|
}
|
|||
|
return dp[m-1]
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "Swift"
|
|||
|
|
|||
|
```swift title="min_path_sum.swift"
|
|||
|
/* 最小路徑和:空間最佳化後的動態規劃 */
|
|||
|
func minPathSumDPComp(grid: [[Int]]) -> Int {
|
|||
|
let n = grid.count
|
|||
|
let m = grid[0].count
|
|||
|
// 初始化 dp 表
|
|||
|
var dp = Array(repeating: 0, count: m)
|
|||
|
// 狀態轉移:首行
|
|||
|
dp[0] = grid[0][0]
|
|||
|
for j in 1 ..< m {
|
|||
|
dp[j] = dp[j - 1] + grid[0][j]
|
|||
|
}
|
|||
|
// 狀態轉移:其餘行
|
|||
|
for i in 1 ..< n {
|
|||
|
// 狀態轉移:首列
|
|||
|
dp[0] = dp[0] + grid[i][0]
|
|||
|
// 狀態轉移:其餘列
|
|||
|
for j in 1 ..< m {
|
|||
|
dp[j] = min(dp[j - 1], dp[j]) + grid[i][j]
|
|||
|
}
|
|||
|
}
|
|||
|
return dp[m - 1]
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "JS"
|
|||
|
|
|||
|
```javascript title="min_path_sum.js"
|
|||
|
/* 最小路徑和:狀態壓縮後的動態規劃 */
|
|||
|
function minPathSumDPComp(grid) {
|
|||
|
const n = grid.length,
|
|||
|
m = grid[0].length;
|
|||
|
// 初始化 dp 表
|
|||
|
const dp = new Array(m);
|
|||
|
// 狀態轉移:首行
|
|||
|
dp[0] = grid[0][0];
|
|||
|
for (let j = 1; j < m; j++) {
|
|||
|
dp[j] = dp[j - 1] + grid[0][j];
|
|||
|
}
|
|||
|
// 狀態轉移:其餘行
|
|||
|
for (let i = 1; i < n; i++) {
|
|||
|
// 狀態轉移:首列
|
|||
|
dp[0] = dp[0] + grid[i][0];
|
|||
|
// 狀態轉移:其餘列
|
|||
|
for (let j = 1; j < m; j++) {
|
|||
|
dp[j] = Math.min(dp[j - 1], dp[j]) + grid[i][j];
|
|||
|
}
|
|||
|
}
|
|||
|
return dp[m - 1];
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "TS"
|
|||
|
|
|||
|
```typescript title="min_path_sum.ts"
|
|||
|
/* 最小路徑和:狀態壓縮後的動態規劃 */
|
|||
|
function minPathSumDPComp(grid: Array<Array<number>>): number {
|
|||
|
const n = grid.length,
|
|||
|
m = grid[0].length;
|
|||
|
// 初始化 dp 表
|
|||
|
const dp = new Array(m);
|
|||
|
// 狀態轉移:首行
|
|||
|
dp[0] = grid[0][0];
|
|||
|
for (let j = 1; j < m; j++) {
|
|||
|
dp[j] = dp[j - 1] + grid[0][j];
|
|||
|
}
|
|||
|
// 狀態轉移:其餘行
|
|||
|
for (let i = 1; i < n; i++) {
|
|||
|
// 狀態轉移:首列
|
|||
|
dp[0] = dp[0] + grid[i][0];
|
|||
|
// 狀態轉移:其餘列
|
|||
|
for (let j = 1; j < m; j++) {
|
|||
|
dp[j] = Math.min(dp[j - 1], dp[j]) + grid[i][j];
|
|||
|
}
|
|||
|
}
|
|||
|
return dp[m - 1];
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "Dart"
|
|||
|
|
|||
|
```dart title="min_path_sum.dart"
|
|||
|
/* 最小路徑和:空間最佳化後的動態規劃 */
|
|||
|
int minPathSumDPComp(List<List<int>> grid) {
|
|||
|
int n = grid.length, m = grid[0].length;
|
|||
|
// 初始化 dp 表
|
|||
|
List<int> dp = List.filled(m, 0);
|
|||
|
dp[0] = grid[0][0];
|
|||
|
for (int j = 1; j < m; j++) {
|
|||
|
dp[j] = dp[j - 1] + grid[0][j];
|
|||
|
}
|
|||
|
// 狀態轉移:其餘行
|
|||
|
for (int i = 1; i < n; i++) {
|
|||
|
// 狀態轉移:首列
|
|||
|
dp[0] = dp[0] + grid[i][0];
|
|||
|
// 狀態轉移:其餘列
|
|||
|
for (int j = 1; j < m; j++) {
|
|||
|
dp[j] = min(dp[j - 1], dp[j]) + grid[i][j];
|
|||
|
}
|
|||
|
}
|
|||
|
return dp[m - 1];
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "Rust"
|
|||
|
|
|||
|
```rust title="min_path_sum.rs"
|
|||
|
/* 最小路徑和:空間最佳化後的動態規劃 */
|
|||
|
fn min_path_sum_dp_comp(grid: &Vec<Vec<i32>>) -> i32 {
|
|||
|
let (n, m) = (grid.len(), grid[0].len());
|
|||
|
// 初始化 dp 表
|
|||
|
let mut dp = vec![0; m];
|
|||
|
// 狀態轉移:首行
|
|||
|
dp[0] = grid[0][0];
|
|||
|
for j in 1..m {
|
|||
|
dp[j] = dp[j - 1] + grid[0][j];
|
|||
|
}
|
|||
|
// 狀態轉移:其餘行
|
|||
|
for i in 1..n {
|
|||
|
// 狀態轉移:首列
|
|||
|
dp[0] = dp[0] + grid[i][0];
|
|||
|
// 狀態轉移:其餘列
|
|||
|
for j in 1..m {
|
|||
|
dp[j] = std::cmp::min(dp[j - 1], dp[j]) + grid[i][j];
|
|||
|
}
|
|||
|
}
|
|||
|
dp[m - 1]
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "C"
|
|||
|
|
|||
|
```c title="min_path_sum.c"
|
|||
|
/* 最小路徑和:空間最佳化後的動態規劃 */
|
|||
|
int minPathSumDPComp(int grid[MAX_SIZE][MAX_SIZE], int n, int m) {
|
|||
|
// 初始化 dp 表
|
|||
|
int *dp = calloc(m, sizeof(int));
|
|||
|
// 狀態轉移:首行
|
|||
|
dp[0] = grid[0][0];
|
|||
|
for (int j = 1; j < m; j++) {
|
|||
|
dp[j] = dp[j - 1] + grid[0][j];
|
|||
|
}
|
|||
|
// 狀態轉移:其餘行
|
|||
|
for (int i = 1; i < n; i++) {
|
|||
|
// 狀態轉移:首列
|
|||
|
dp[0] = dp[0] + grid[i][0];
|
|||
|
// 狀態轉移:其餘列
|
|||
|
for (int j = 1; j < m; j++) {
|
|||
|
dp[j] = myMin(dp[j - 1], dp[j]) + grid[i][j];
|
|||
|
}
|
|||
|
}
|
|||
|
int res = dp[m - 1];
|
|||
|
// 釋放記憶體
|
|||
|
free(dp);
|
|||
|
return res;
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "Kotlin"
|
|||
|
|
|||
|
```kotlin title="min_path_sum.kt"
|
|||
|
/* 最小路徑和:空間最佳化後的動態規劃 */
|
|||
|
fun minPathSumDPComp(grid: Array<Array<Int>>): Int {
|
|||
|
val n = grid.size
|
|||
|
val m = grid[0].size
|
|||
|
// 初始化 dp 表
|
|||
|
val dp = IntArray(m)
|
|||
|
// 狀態轉移:首行
|
|||
|
dp[0] = grid[0][0]
|
|||
|
for (j in 1..<m) {
|
|||
|
dp[j] = dp[j - 1] + grid[0][j]
|
|||
|
}
|
|||
|
// 狀態轉移:其餘行
|
|||
|
for (i in 1..<n) {
|
|||
|
// 狀態轉移:首列
|
|||
|
dp[0] = dp[0] + grid[i][0]
|
|||
|
// 狀態轉移:其餘列
|
|||
|
for (j in 1..<m) {
|
|||
|
dp[j] = (min(dp[j - 1].toDouble(), dp[j].toDouble()) + grid[i][j]).toInt()
|
|||
|
}
|
|||
|
}
|
|||
|
return dp[m - 1]
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "Ruby"
|
|||
|
|
|||
|
```ruby title="min_path_sum.rb"
|
|||
|
[class]{}-[func]{min_path_sum_dp_comp}
|
|||
|
```
|
|||
|
|
|||
|
=== "Zig"
|
|||
|
|
|||
|
```zig title="min_path_sum.zig"
|
|||
|
// 最小路徑和:空間最佳化後的動態規劃
|
|||
|
fn minPathSumDPComp(comptime grid: anytype) i32 {
|
|||
|
comptime var n = grid.len;
|
|||
|
comptime var m = grid[0].len;
|
|||
|
// 初始化 dp 表
|
|||
|
var dp = [_]i32{0} ** m;
|
|||
|
// 狀態轉移:首行
|
|||
|
dp[0] = grid[0][0];
|
|||
|
for (1..m) |j| {
|
|||
|
dp[j] = dp[j - 1] + grid[0][j];
|
|||
|
}
|
|||
|
// 狀態轉移:其餘行
|
|||
|
for (1..n) |i| {
|
|||
|
// 狀態轉移:首列
|
|||
|
dp[0] = dp[0] + grid[i][0];
|
|||
|
for (1..m) |j| {
|
|||
|
dp[j] = @min(dp[j - 1], dp[j]) + grid[i][j];
|
|||
|
}
|
|||
|
}
|
|||
|
return dp[m - 1];
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
??? pythontutor "視覺化執行"
|
|||
|
|
|||
|
<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=from%20math%20import%20inf%0A%0Adef%20min_path_sum_dp_comp%28grid%3A%20list%5Blist%5Bint%5D%5D%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E6%9C%80%E5%B0%8F%E8%B7%AF%E5%BE%84%E5%92%8C%EF%BC%9A%E7%A9%BA%E9%97%B4%E4%BC%98%E5%8C%96%E5%90%8E%E7%9A%84%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%22%22%22%0A%20%20%20%20n,%20m%20%3D%20len%28grid%29,%20len%28grid%5B0%5D%29%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%20dp%20%E8%A1%A8%0A%20%20%20%20dp%20%3D%20%5B0%5D%20*%20m%0A%20%20%20%20%23%20%E7%8A%B6%E6%80%81%E8%BD%AC%E7%A7%BB%EF%BC%9A%E9%A6%96%E8%A1%8C%0A%20%20%20%20dp%5B0%5D%20%3D%20grid%5B0%5D%5B0%5D%0A%20%20%20%20for%20j%20in%20range%281,%20m%29%3A%0A%20%20%20%20%20%20%20%20dp%5Bj%5D%20%3D%20dp%5Bj%20-%201%5D%20%2B%20grid%5B0%5D%5Bj%5D%0A%20%20%20%20%23%20%E7%8A%B6%E6%80%81%E8%BD%AC%E7%A7%BB%EF%BC%9A%E5%85%B6%E4%BD%99%E8%A1%8C%0A%20%20%20%20for%20i%20in%20range%281,%20n%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E7%8A%B6%E6%80%81%E8%BD%AC%E7%A7%BB%EF%BC%9A%E9%A6%96%E5%88%97%0A%20%20%20%20%20%20%20%20dp%5B0%5D%20%3D%20dp%5B0%5D%20%2B%20grid%5Bi%5D%5B0%5D%0A%20%20%20%20%20%20%20%20%23%20%E7%8A%B6%E6%80%81%E8%BD%AC%E7%A7%BB%EF%BC%9A%E5%85%B6%E4%BD%99%E5%88%97%0A%20%20%20%20%20%20%20%20for%20j%20in%20range%281,%20m%29%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20dp%5Bj%5D%20%3D%20min%28dp%5Bj%20-%201%5D,%20dp%5Bj%5D%29%20%2B%20grid%5Bi%5D%5Bj%5D%0A%20%20%20%20return%20dp%5Bm%20-%201%5D%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20grid%20%3D%20%5B%5B1,%203,%201,%205%5D,%20%5B2,%202,%204,%202%5D,%20%5B5,%203,%202,%201%5D,%20%5B4,%203,%205,%202%5D%5D%0A%20%20%20%20n,%20m%20%3D%20len%28grid%29,%20len%28grid%5B0%5D%29%0A%0A%20%20%20%20%23%20%E7%A9%BA%E9%97%B4%E4%BC%98%E5%8C%96%E5%90%8E%E7%9A%84%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%0A%20%20%20%20res%20%3D%20min_path_sum_dp_comp%28grid%29%0A%20%20%20%20print%28f%22%E4%BB%8E%E5%B7%A6%E4%B8%8A%E8%A7%92%E5%88%B0%E5%8F%B3%E4%B8%8B%E8%A7%92%E7%9A%84%E5%81%9A%E5%B0%8F%E8%B7%AF%E5%BE%84%E5%92%8C%E4%B8%BA%20%7Bres%7D%22%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=6&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
|||
|
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=from%20math%20import%20inf%0A%0Adef%20min_path_sum_dp_comp%28grid%3A%20list%5Blist%5Bint%5D%5D%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E6%9C%80%E5%B0%8F%E8%B7%AF%E5%BE%84%E5%92%8C%EF%BC%9A%E7%A9%BA%E9%97%B4%E4%BC%98%E5%8C%96%E5%90%8E%E7%9A%84%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%22%22%22%0A%20%20%20%20n,%20m%20%3D%20len%28grid%29,%20len%28grid%5B0%5D%29%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%20dp%20%E8%A1%A8%0A%20%20%20%20dp%20%3D%20%5B0%5D%20*%20m%0A%20%20%20%20%23%20%E7%8A%B6%E6%80%81%E8%BD%AC%E7%A7%BB%EF%BC%9A%E9%A6%96%E8%A1%8C%0A%20%20%20%20dp%5B0%5D%20%3D%20grid%5B0%5D%5B0%5D%0A%20%20%20%20for%20j%20in%20range%281,%20m%29%3A%0A%20%20%20%20%20%20%20%20dp%5Bj%5D%20%3D%20dp%5Bj%20-%201%5D%20%2B%20grid%5B0%5D%5Bj%5D%0A%20%20%20%20%23%20%E7%8A%B6%E6%80%81%E8%BD%AC%E7%A7%BB%EF%BC%9A%E5%85%B6%E4%BD%99%E8%A1%8C%0A%20%20%20%20for%20i%20in%20range%281,%20n%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E7%8A%B6%E6%80%81%E8%BD%AC%E7%A7%BB%EF%BC%9A%E9%A6%96%E5%88%97%0A%20%20%20%20%20%20%20%20dp%5B0%5D%20%3D%20dp%5B0%5D%20%2B%20grid%5Bi%5D%5B0%5D%0A%20%20%20%20%20%20%20%20%23%20%E7%8A%B6%E6%80%81%E8%BD%AC%E7%A7%BB%EF%BC%9A%E5%85%B6%E4%BD%99%E5%88%97%0A%20%20%20%20%20%20%20%20for%20j%20in%20range%281,%20m%29%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20dp%5Bj%5D%20%3D%20min%28dp%5Bj%20-%201%5D,%20dp%5Bj%5D%29%20%2B%20grid%5Bi%5D%5Bj%5D%0A%20%20%20%20return%20dp%5Bm%20-%201%5D%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20grid%20%3D%20%5B%5B1,%203,%201,%205%5D,%20%5B2,%202,%204,%202%5D,%20%5B5,%203,%202,%201%5D,%20%5B4,%203,%205,%202%5D%5D%0A%20%20%20%20n,%20m%20%3D%20len%28grid%29,%20len%28grid%5B0%5D%29%0A%0A%20%20%20%20%23%20%E7%A9%BA%E9%97%B4%E4%BC%98%E5%8C%96%E5%90%8E%E7%9A%84%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%0A%20%20%20%20res%20%3D%20min_path_sum_dp_comp%28grid%29%0A%20%20%20%20print%28f%22%E4%BB%8E%E5%B7%A6%E4%B8%8A%E8%A7%92%E5%88%B0%E5%8F%B3%E4%B8%8B%E8%A7%92%E7%9A%84%E5%81%9A%E5%B0%8F%E8%B7%AF%E5%BE%84%E5%92%8C%E4%B8%BA%20%7Bres%7D%22%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=6&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
|