hello-algo/codes/kotlin/chapter_backtracking/n_queens.kt

85 lines
2.5 KiB
Kotlin
Raw Normal View History

/**
* File: n_queens.kt
* Created Time: 2024-01-25
* Author: curtishd (1023632660@qq.com)
*/
package chapter_backtracking.n_queens
/* 回溯算法n 皇后 */
fun backtrack(
row: Int,
n: Int,
state: MutableList<MutableList<String>>,
res: MutableList<MutableList<MutableList<String>>?>,
cols: BooleanArray,
diags1: BooleanArray,
diags2: BooleanArray
) {
// 当放置完所有行时,记录解
if (row == n) {
val copyState = mutableListOf<MutableList<String>>()
for (sRow in state) {
copyState.add(sRow.toMutableList())
}
res.add(copyState)
return
}
// 遍历所有列
for (col in 0..<n) {
// 计算该格子对应的主对角线和次对角线
val diag1 = row - col + n - 1
val diag2 = row + col
// 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后
if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {
// 尝试:将皇后放置在该格子
state[row][col] = "Q"
diags2[diag2] = true
diags1[diag1] = diags2[diag2]
cols[col] = diags1[diag1]
// 放置下一行
backtrack(row + 1, n, state, res, cols, diags1, diags2)
// 回退:将该格子恢复为空位
state[row][col] = "#"
diags2[diag2] = false
diags1[diag1] = diags2[diag2]
cols[col] = diags1[diag1]
}
}
}
/* 求解 n 皇后 */
fun nQueens(n: Int): MutableList<MutableList<MutableList<String>>?> {
// 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位
val state = mutableListOf<MutableList<String>>()
for (i in 0..<n) {
val row = mutableListOf<String>()
for (j in 0..<n) {
row.add("#")
}
state.add(row)
}
val cols = BooleanArray(n) // 记录列是否有皇后
val diags1 = BooleanArray(2 * n - 1) // 记录主对角线上是否有皇后
val diags2 = BooleanArray(2 * n - 1) // 记录次对角线上是否有皇后
val res = mutableListOf<MutableList<MutableList<String>>?>()
backtrack(0, n, state, res, cols, diags1, diags2)
return res
}
/* Driver Code */
fun main() {
val n = 4
val res = nQueens(n)
println("输入棋盘长宽为 $n")
println("皇后放置方案共有 ${res.size}")
for (state in res) {
println("--------------------")
for (row in state!!) {
println(row)
}
}
}