hello-algo/docs/chapter_heap/top_k.md

423 lines
14 KiB
Markdown
Raw Normal View History

2023-10-06 13:31:21 +08:00
---
comments: true
---
# 8.3   Top-K 问题
!!! question
2023-12-02 06:24:05 +08:00
给定一个长度为 $n$ 的无序数组 `nums` ,请返回数组中前 $k$ 大的元素。
2023-10-06 13:31:21 +08:00
对于该问题,我们先介绍两种思路比较直接的解法,再介绍效率更高的堆解法。
## 8.3.1   方法一:遍历选择
我们可以进行图 8-6 所示的 $k$ 轮遍历,分别在每轮中提取第 $1$、$2$、$\dots$、$k$ 大的元素,时间复杂度为 $O(nk)$ 。
此方法只适用于 $k \ll n$ 的情况,因为当 $k$ 与 $n$ 比较接近时,其时间复杂度趋向于 $O(n^2)$ ,非常耗时。
2023-11-09 05:13:48 +08:00
![遍历寻找最大的 k 个元素](top_k.assets/top_k_traversal.png){ class="animation-figure" }
2023-10-06 13:31:21 +08:00
<p align="center"> 图 8-6 &nbsp; 遍历寻找最大的 k 个元素 </p>
!!! tip
当 $k = n$ 时,我们可以得到完整的有序序列,此时等价于“选择排序”算法。
## 8.3.2 &nbsp; 方法二:排序
如图 8-7 所示,我们可以先对数组 `nums` 进行排序,再返回最右边的 $k$ 个元素,时间复杂度为 $O(n \log n)$ 。
2023-12-02 06:24:05 +08:00
显然,该方法“超额”完成任务了,因为我们只需找出最大的 $k$ 个元素即可,而不需要排序其他元素。
2023-10-06 13:31:21 +08:00
2023-11-09 05:13:48 +08:00
![排序寻找最大的 k 个元素](top_k.assets/top_k_sorting.png){ class="animation-figure" }
2023-10-06 13:31:21 +08:00
<p align="center"> 图 8-7 &nbsp; 排序寻找最大的 k 个元素 </p>
## 8.3.3 &nbsp; 方法三:堆
我们可以基于堆更加高效地解决 Top-K 问题,流程如图 8-8 所示。
1. 初始化一个小顶堆,其堆顶元素最小。
2. 先将数组的前 $k$ 个元素依次入堆。
3. 从第 $k + 1$ 个元素开始,若当前元素大于堆顶元素,则将堆顶元素出堆,并将当前元素入堆。
4. 遍历完成后,堆中保存的就是最大的 $k$ 个元素。
=== "<1>"
2023-11-09 05:13:48 +08:00
![基于堆寻找最大的 k 个元素](top_k.assets/top_k_heap_step1.png){ class="animation-figure" }
2023-10-06 13:31:21 +08:00
=== "<2>"
2023-11-09 05:13:48 +08:00
![top_k_heap_step2](top_k.assets/top_k_heap_step2.png){ class="animation-figure" }
2023-10-06 13:31:21 +08:00
=== "<3>"
2023-11-09 05:13:48 +08:00
![top_k_heap_step3](top_k.assets/top_k_heap_step3.png){ class="animation-figure" }
2023-10-06 13:31:21 +08:00
=== "<4>"
2023-11-09 05:13:48 +08:00
![top_k_heap_step4](top_k.assets/top_k_heap_step4.png){ class="animation-figure" }
2023-10-06 13:31:21 +08:00
=== "<5>"
2023-11-09 05:13:48 +08:00
![top_k_heap_step5](top_k.assets/top_k_heap_step5.png){ class="animation-figure" }
2023-10-06 13:31:21 +08:00
=== "<6>"
2023-11-09 05:13:48 +08:00
![top_k_heap_step6](top_k.assets/top_k_heap_step6.png){ class="animation-figure" }
2023-10-06 13:31:21 +08:00
=== "<7>"
2023-11-09 05:13:48 +08:00
![top_k_heap_step7](top_k.assets/top_k_heap_step7.png){ class="animation-figure" }
2023-10-06 13:31:21 +08:00
=== "<8>"
2023-11-09 05:13:48 +08:00
![top_k_heap_step8](top_k.assets/top_k_heap_step8.png){ class="animation-figure" }
2023-10-06 13:31:21 +08:00
=== "<9>"
2023-11-09 05:13:48 +08:00
![top_k_heap_step9](top_k.assets/top_k_heap_step9.png){ class="animation-figure" }
2023-10-06 13:31:21 +08:00
<p align="center"> 图 8-8 &nbsp; 基于堆寻找最大的 k 个元素 </p>
2023-12-02 06:24:05 +08:00
示例代码如下:
2023-10-06 13:31:21 +08:00
=== "Python"
```python title="top_k.py"
2023-10-06 14:10:18 +08:00
def top_k_heap(nums: list[int], k: int) -> list[int]:
"""基于堆查找数组中最大的 k 个元素"""
2023-10-26 03:00:28 +08:00
# 初始化小顶堆
2023-10-06 14:10:18 +08:00
heap = []
# 将数组的前 k 个元素入堆
for i in range(k):
heapq.heappush(heap, nums[i])
# 从第 k+1 个元素开始,保持堆的长度为 k
for i in range(k, len(nums)):
# 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
if nums[i] > heap[0]:
heapq.heappop(heap)
heapq.heappush(heap, nums[i])
return heap
2023-10-06 13:31:21 +08:00
```
=== "C++"
```cpp title="top_k.cpp"
2023-10-06 14:10:18 +08:00
/* 基于堆查找数组中最大的 k 个元素 */
priority_queue<int, vector<int>, greater<int>> topKHeap(vector<int> &nums, int k) {
2023-10-26 03:00:28 +08:00
// 初始化小顶堆
2023-10-06 14:10:18 +08:00
priority_queue<int, vector<int>, greater<int>> heap;
// 将数组的前 k 个元素入堆
for (int i = 0; i < k; i++) {
heap.push(nums[i]);
}
// 从第 k+1 个元素开始,保持堆的长度为 k
for (int i = k; i < nums.size(); i++) {
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
if (nums[i] > heap.top()) {
heap.pop();
heap.push(nums[i]);
}
}
return heap;
}
2023-10-06 13:31:21 +08:00
```
=== "Java"
```java title="top_k.java"
2023-10-06 14:10:18 +08:00
/* 基于堆查找数组中最大的 k 个元素 */
Queue<Integer> topKHeap(int[] nums, int k) {
2023-10-26 03:00:28 +08:00
// 初始化小顶堆
2023-10-06 14:10:18 +08:00
Queue<Integer> heap = new PriorityQueue<Integer>();
// 将数组的前 k 个元素入堆
for (int i = 0; i < k; i++) {
heap.offer(nums[i]);
}
// 从第 k+1 个元素开始,保持堆的长度为 k
for (int i = k; i < nums.length; i++) {
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
if (nums[i] > heap.peek()) {
heap.poll();
heap.offer(nums[i]);
}
}
return heap;
}
2023-10-06 13:31:21 +08:00
```
=== "C#"
```csharp title="top_k.cs"
2023-10-06 14:10:18 +08:00
/* 基于堆查找数组中最大的 k 个元素 */
2023-10-08 01:43:28 +08:00
PriorityQueue<int, int> TopKHeap(int[] nums, int k) {
2023-10-26 03:00:28 +08:00
// 初始化小顶堆
2023-10-08 01:43:28 +08:00
PriorityQueue<int, int> heap = new();
2023-10-06 14:10:18 +08:00
// 将数组的前 k 个元素入堆
for (int i = 0; i < k; i++) {
heap.Enqueue(nums[i], nums[i]);
}
// 从第 k+1 个元素开始,保持堆的长度为 k
for (int i = k; i < nums.Length; i++) {
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
if (nums[i] > heap.Peek()) {
heap.Dequeue();
heap.Enqueue(nums[i], nums[i]);
}
}
return heap;
}
2023-10-06 13:31:21 +08:00
```
=== "Go"
```go title="top_k.go"
2023-10-06 14:10:18 +08:00
/* 基于堆查找数组中最大的 k 个元素 */
func topKHeap(nums []int, k int) *minHeap {
2023-10-26 03:00:28 +08:00
// 初始化小顶堆
2023-10-06 14:10:18 +08:00
h := &minHeap{}
heap.Init(h)
// 将数组的前 k 个元素入堆
for i := 0; i < k; i++ {
heap.Push(h, nums[i])
}
// 从第 k+1 个元素开始,保持堆的长度为 k
for i := k; i < len(nums); i++ {
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
if nums[i] > h.Top().(int) {
heap.Pop(h)
heap.Push(h, nums[i])
}
}
return h
}
2023-10-06 13:31:21 +08:00
```
=== "Swift"
```swift title="top_k.swift"
2023-10-06 14:10:18 +08:00
/* 基于堆查找数组中最大的 k 个元素 */
func topKHeap(nums: [Int], k: Int) -> [Int] {
2023-10-27 23:48:10 +08:00
// 初始化一个小顶堆,并将前 k 个元素建堆
var heap = Heap(nums.prefix(k))
2023-10-06 14:10:18 +08:00
// 从第 k+1 个元素开始,保持堆的长度为 k
for i in stride(from: k, to: nums.count, by: 1) {
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
2023-10-27 23:48:10 +08:00
if nums[i] > heap.min()! {
_ = heap.removeMin()
heap.insert(nums[i])
2023-10-06 14:10:18 +08:00
}
}
2023-10-27 23:48:10 +08:00
return heap.unordered
2023-10-06 14:10:18 +08:00
}
2023-10-06 13:31:21 +08:00
```
=== "JS"
```javascript title="top_k.js"
2023-10-26 03:00:28 +08:00
/* 元素入堆 */
function pushMinHeap(maxHeap, val) {
// 元素取反
maxHeap.push(-val);
}
/* 元素出堆 */
function popMinHeap(maxHeap) {
// 元素取反
return -maxHeap.pop();
}
/* 访问堆顶元素 */
function peekMinHeap(maxHeap) {
// 元素取反
return -maxHeap.peek();
}
/* 取出堆中元素 */
function getMinHeap(maxHeap) {
// 元素取反
return maxHeap.getMaxHeap().map((num) => -num);
}
2023-10-06 14:10:18 +08:00
/* 基于堆查找数组中最大的 k 个元素 */
function topKHeap(nums, k) {
2023-10-26 03:00:28 +08:00
// 初始化小顶堆
// 请注意:我们将堆中所有元素取反,从而用大顶堆来模拟小顶堆
const maxHeap = new MaxHeap([]);
2023-10-06 14:10:18 +08:00
// 将数组的前 k 个元素入堆
2023-10-26 03:00:28 +08:00
for (let i = 0; i < k; i++) {
pushMinHeap(maxHeap, nums[i]);
}
2023-10-06 14:10:18 +08:00
// 从第 k+1 个元素开始,保持堆的长度为 k
2023-10-26 03:00:28 +08:00
for (let i = k; i < nums.length; i++) {
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
if (nums[i] > peekMinHeap(maxHeap)) {
popMinHeap(maxHeap);
pushMinHeap(maxHeap, nums[i]);
2023-10-06 14:10:18 +08:00
}
}
2023-10-26 03:00:28 +08:00
// 返回堆中元素
return getMinHeap(maxHeap);
2023-10-06 14:10:18 +08:00
}
2023-10-06 13:31:21 +08:00
```
=== "TS"
```typescript title="top_k.ts"
2023-10-29 20:01:26 +08:00
/* 元素入堆 */
function pushMinHeap(maxHeap: MaxHeap, val: number): void {
// 元素取反
maxHeap.push(-val);
}
2023-10-26 03:00:28 +08:00
2023-10-29 20:01:26 +08:00
/* 元素出堆 */
function popMinHeap(maxHeap: MaxHeap): number {
// 元素取反
return -maxHeap.pop();
}
2023-10-26 03:00:28 +08:00
2023-10-29 20:01:26 +08:00
/* 访问堆顶元素 */
function peekMinHeap(maxHeap: MaxHeap): number {
// 元素取反
return -maxHeap.peek();
}
2023-10-26 03:00:28 +08:00
2023-10-29 20:01:26 +08:00
/* 取出堆中元素 */
function getMinHeap(maxHeap: MaxHeap): number[] {
// 元素取反
return maxHeap.getMaxHeap().map((num: number) => -num);
}
2023-10-26 03:00:28 +08:00
2023-10-06 14:10:18 +08:00
/* 基于堆查找数组中最大的 k 个元素 */
function topKHeap(nums: number[], k: number): number[] {
2023-10-29 20:01:26 +08:00
// 初始化小顶堆
// 请注意:我们将堆中所有元素取反,从而用大顶堆来模拟小顶堆
const maxHeap = new MaxHeap([]);
2023-10-06 14:10:18 +08:00
// 将数组的前 k 个元素入堆
2023-10-29 20:01:26 +08:00
for (let i = 0; i < k; i++) {
pushMinHeap(maxHeap, nums[i]);
}
2023-10-06 14:10:18 +08:00
// 从第 k+1 个元素开始,保持堆的长度为 k
2023-10-29 20:01:26 +08:00
for (let i = k; i < nums.length; i++) {
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
if (nums[i] > peekMinHeap(maxHeap)) {
popMinHeap(maxHeap);
pushMinHeap(maxHeap, nums[i]);
2023-10-06 14:10:18 +08:00
}
}
2023-10-29 20:01:26 +08:00
// 返回堆中元素
return getMinHeap(maxHeap);
2023-10-06 14:10:18 +08:00
}
2023-10-06 13:31:21 +08:00
```
=== "Dart"
```dart title="top_k.dart"
2023-10-06 14:10:18 +08:00
/* 基于堆查找数组中最大的 k 个元素 */
MinHeap topKHeap(List<int> nums, int k) {
2023-10-26 03:00:28 +08:00
// 初始化小顶堆,将数组的前 k 个元素入堆
2023-10-06 14:10:18 +08:00
MinHeap heap = MinHeap(nums.sublist(0, k));
// 从第 k+1 个元素开始,保持堆的长度为 k
for (int i = k; i < nums.length; i++) {
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
if (nums[i] > heap.peek()) {
heap.pop();
heap.push(nums[i]);
}
}
return heap;
}
2023-10-06 13:31:21 +08:00
```
=== "Rust"
```rust title="top_k.rs"
2023-10-06 14:10:18 +08:00
/* 基于堆查找数组中最大的 k 个元素 */
fn top_k_heap(nums: Vec<i32>, k: usize) -> BinaryHeap<Reverse<i32>> {
2023-10-26 03:00:28 +08:00
// BinaryHeap 是大顶堆,使用 Reverse 将元素取反,从而实现小顶堆
2023-10-06 14:10:18 +08:00
let mut heap = BinaryHeap::<Reverse<i32>>::new();
// 将数组的前 k 个元素入堆
for &num in nums.iter().take(k) {
heap.push(Reverse(num));
}
// 从第 k+1 个元素开始,保持堆的长度为 k
for &num in nums.iter().skip(k) {
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
if num > heap.peek().unwrap().0 {
heap.pop();
heap.push(Reverse(num));
}
}
heap
}
2023-10-06 13:31:21 +08:00
```
=== "C"
```c title="top_k.c"
2023-10-26 03:00:28 +08:00
/* 元素入堆 */
void pushMinHeap(MaxHeap *maxHeap, int val) {
// 元素取反
push(maxHeap, -val);
}
/* 元素出堆 */
int popMinHeap(MaxHeap *maxHeap) {
// 元素取反
return -pop(maxHeap);
}
/* 访问堆顶元素 */
int peekMinHeap(MaxHeap *maxHeap) {
// 元素取反
return -peek(maxHeap);
}
/* 取出堆中元素 */
int *getMinHeap(MaxHeap *maxHeap) {
// 将堆中所有元素取反并存入 res 数组
int *res = (int *)malloc(maxHeap->size * sizeof(int));
for (int i = 0; i < maxHeap->size; i++) {
res[i] = -maxHeap->data[i];
}
return res;
}
/* 取出堆中元素 */
int *getMinHeap(MaxHeap *maxHeap) {
// 将堆中所有元素取反并存入 res 数组
int *res = (int *)malloc(maxHeap->size * sizeof(int));
for (int i = 0; i < maxHeap->size; i++) {
res[i] = -maxHeap->data[i];
}
return res;
}
// 基于堆查找数组中最大的 k 个元素的函数
int *topKHeap(int *nums, int sizeNums, int k) {
// 初始化小顶堆
// 请注意:我们将堆中所有元素取反,从而用大顶堆来模拟小顶堆
2023-11-17 00:35:19 +08:00
int *empty = (int *)malloc(0);
2023-10-26 03:00:28 +08:00
MaxHeap *maxHeap = newMaxHeap(empty, 0);
// 将数组的前 k 个元素入堆
for (int i = 0; i < k; i++) {
pushMinHeap(maxHeap, nums[i]);
}
// 从第 k+1 个元素开始,保持堆的长度为 k
for (int i = k; i < sizeNums; i++) {
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
if (nums[i] > peekMinHeap(maxHeap)) {
popMinHeap(maxHeap);
pushMinHeap(maxHeap, nums[i]);
}
}
int *res = getMinHeap(maxHeap);
// 释放内存
2023-11-01 05:12:56 +08:00
delMaxHeap(maxHeap);
2023-10-26 03:00:28 +08:00
return res;
}
2023-10-06 13:31:21 +08:00
```
=== "Zig"
```zig title="top_k.zig"
[class]{}-[func]{topKHeap}
```
2023-12-02 06:24:05 +08:00
总共执行了 $n$ 轮入堆和出堆,堆的最大长度为 $k$ ,因此时间复杂度为 $O(n \log k)$ 。该方法的效率很高,当 $k$ 较小时,时间复杂度趋向 $O(n)$ ;当 $k$ 较大时,时间复杂度不会超过 $O(n \log n)$ 。
另外,该方法适用于动态数据流的使用场景。在不断加入数据时,我们可以持续维护堆内的元素,从而实现最大 $k$ 个元素的动态更新。