2023-07-18 12:49:03 +08:00
|
|
|
|
/**
|
|
|
|
|
* File: knapsack.swift
|
|
|
|
|
* Created Time: 2023-07-15
|
|
|
|
|
* Author: nuomi1 (nuomi1@qq.com)
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* 0-1 背包:暴力搜索 */
|
|
|
|
|
func knapsackDFS(wgt: [Int], val: [Int], i: Int, c: Int) -> Int {
|
2023-12-02 06:21:34 +08:00
|
|
|
|
// 若已选完所有物品或背包无剩余容量,则返回价值 0
|
2023-07-18 12:49:03 +08:00
|
|
|
|
if i == 0 || c == 0 {
|
|
|
|
|
return 0
|
|
|
|
|
}
|
2023-12-02 06:21:34 +08:00
|
|
|
|
// 若超过背包容量,则只能选择不放入背包
|
2023-07-18 12:49:03 +08:00
|
|
|
|
if wgt[i - 1] > c {
|
|
|
|
|
return knapsackDFS(wgt: wgt, val: val, i: i - 1, c: c)
|
|
|
|
|
}
|
|
|
|
|
// 计算不放入和放入物品 i 的最大价值
|
|
|
|
|
let no = knapsackDFS(wgt: wgt, val: val, i: i - 1, c: c)
|
|
|
|
|
let yes = knapsackDFS(wgt: wgt, val: val, i: i - 1, c: c - wgt[i - 1]) + val[i - 1]
|
|
|
|
|
// 返回两种方案中价值更大的那一个
|
|
|
|
|
return max(no, yes)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 0-1 背包:记忆化搜索 */
|
|
|
|
|
func knapsackDFSMem(wgt: [Int], val: [Int], mem: inout [[Int]], i: Int, c: Int) -> Int {
|
2023-12-02 06:21:34 +08:00
|
|
|
|
// 若已选完所有物品或背包无剩余容量,则返回价值 0
|
2023-07-18 12:49:03 +08:00
|
|
|
|
if i == 0 || c == 0 {
|
|
|
|
|
return 0
|
|
|
|
|
}
|
|
|
|
|
// 若已有记录,则直接返回
|
|
|
|
|
if mem[i][c] != -1 {
|
|
|
|
|
return mem[i][c]
|
|
|
|
|
}
|
2023-12-02 06:21:34 +08:00
|
|
|
|
// 若超过背包容量,则只能选择不放入背包
|
2023-07-18 12:49:03 +08:00
|
|
|
|
if wgt[i - 1] > c {
|
|
|
|
|
return knapsackDFSMem(wgt: wgt, val: val, mem: &mem, i: i - 1, c: c)
|
|
|
|
|
}
|
|
|
|
|
// 计算不放入和放入物品 i 的最大价值
|
|
|
|
|
let no = knapsackDFSMem(wgt: wgt, val: val, mem: &mem, i: i - 1, c: c)
|
|
|
|
|
let yes = knapsackDFSMem(wgt: wgt, val: val, mem: &mem, i: i - 1, c: c - wgt[i - 1]) + val[i - 1]
|
|
|
|
|
// 记录并返回两种方案中价值更大的那一个
|
|
|
|
|
mem[i][c] = max(no, yes)
|
|
|
|
|
return mem[i][c]
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 0-1 背包:动态规划 */
|
|
|
|
|
func knapsackDP(wgt: [Int], val: [Int], cap: Int) -> Int {
|
|
|
|
|
let n = wgt.count
|
|
|
|
|
// 初始化 dp 表
|
|
|
|
|
var dp = Array(repeating: Array(repeating: 0, count: cap + 1), count: n + 1)
|
|
|
|
|
// 状态转移
|
2024-03-20 21:15:39 +08:00
|
|
|
|
for i in 1 ... n {
|
|
|
|
|
for c in 1 ... cap {
|
2023-07-18 12:49:03 +08:00
|
|
|
|
if wgt[i - 1] > c {
|
|
|
|
|
// 若超过背包容量,则不选物品 i
|
|
|
|
|
dp[i][c] = dp[i - 1][c]
|
|
|
|
|
} else {
|
|
|
|
|
// 不选和选物品 i 这两种方案的较大值
|
|
|
|
|
dp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1])
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return dp[n][cap]
|
|
|
|
|
}
|
|
|
|
|
|
2023-08-27 00:50:18 +08:00
|
|
|
|
/* 0-1 背包:空间优化后的动态规划 */
|
2023-07-18 12:49:03 +08:00
|
|
|
|
func knapsackDPComp(wgt: [Int], val: [Int], cap: Int) -> Int {
|
|
|
|
|
let n = wgt.count
|
|
|
|
|
// 初始化 dp 表
|
|
|
|
|
var dp = Array(repeating: 0, count: cap + 1)
|
|
|
|
|
// 状态转移
|
2024-03-20 21:15:39 +08:00
|
|
|
|
for i in 1 ... n {
|
2023-07-18 12:49:03 +08:00
|
|
|
|
// 倒序遍历
|
2024-03-20 21:15:39 +08:00
|
|
|
|
for c in (1 ... cap).reversed() {
|
2023-07-18 12:49:03 +08:00
|
|
|
|
if wgt[i - 1] <= c {
|
|
|
|
|
// 不选和选物品 i 这两种方案的较大值
|
|
|
|
|
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1])
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return dp[cap]
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
@main
|
|
|
|
|
enum Knapsack {
|
|
|
|
|
/* Driver Code */
|
|
|
|
|
static func main() {
|
|
|
|
|
let wgt = [10, 20, 30, 40, 50]
|
|
|
|
|
let val = [50, 120, 150, 210, 240]
|
|
|
|
|
let cap = 50
|
|
|
|
|
let n = wgt.count
|
|
|
|
|
|
|
|
|
|
// 暴力搜索
|
|
|
|
|
var res = knapsackDFS(wgt: wgt, val: val, i: n, c: cap)
|
|
|
|
|
print("不超过背包容量的最大物品价值为 \(res)")
|
|
|
|
|
|
|
|
|
|
// 记忆化搜索
|
|
|
|
|
var mem = Array(repeating: Array(repeating: -1, count: cap + 1), count: n + 1)
|
|
|
|
|
res = knapsackDFSMem(wgt: wgt, val: val, mem: &mem, i: n, c: cap)
|
|
|
|
|
print("不超过背包容量的最大物品价值为 \(res)")
|
|
|
|
|
|
|
|
|
|
// 动态规划
|
|
|
|
|
res = knapsackDP(wgt: wgt, val: val, cap: cap)
|
|
|
|
|
print("不超过背包容量的最大物品价值为 \(res)")
|
|
|
|
|
|
2023-08-27 00:50:18 +08:00
|
|
|
|
// 空间优化后的动态规划
|
2023-07-18 12:49:03 +08:00
|
|
|
|
res = knapsackDPComp(wgt: wgt, val: val, cap: cap)
|
|
|
|
|
print("不超过背包容量的最大物品价值为 \(res)")
|
|
|
|
|
}
|
|
|
|
|
}
|