hello-algo/zh-hant/codes/python/chapter_backtracking/subset_sum_i_naive.py

51 lines
1.4 KiB
Python
Raw Normal View History

feat: Traditional Chinese version (#1163) * First commit * Update mkdocs.yml * Translate all the docs to traditional Chinese * Translate the code files. * Translate the docker file * Fix mkdocs.yml * Translate all the figures from SC to TC * 二叉搜尋樹 -> 二元搜尋樹 * Update terminology. * Update terminology * 构造函数/构造方法 -> 建構子 异或 -> 互斥或 * 擴充套件 -> 擴展 * constant - 常量 - 常數 * 類 -> 類別 * AVL -> AVL 樹 * 數組 -> 陣列 * 係統 -> 系統 斐波那契數列 -> 費波那契數列 運算元量 -> 運算量 引數 -> 參數 * 聯絡 -> 關聯 * 麵試 -> 面試 * 面向物件 -> 物件導向 歸併排序 -> 合併排序 范式 -> 範式 * Fix 算法 -> 演算法 * 錶示 -> 表示 反碼 -> 一補數 補碼 -> 二補數 列列尾部 -> 佇列尾部 區域性性 -> 區域性 一摞 -> 一疊 * Synchronize with main branch * 賬號 -> 帳號 推匯 -> 推導 * Sync with main branch * First commit * Update mkdocs.yml * Translate all the docs to traditional Chinese * Translate the code files. * Translate the docker file * Fix mkdocs.yml * Translate all the figures from SC to TC * 二叉搜尋樹 -> 二元搜尋樹 * Update terminology * 构造函数/构造方法 -> 建構子 异或 -> 互斥或 * 擴充套件 -> 擴展 * constant - 常量 - 常數 * 類 -> 類別 * AVL -> AVL 樹 * 數組 -> 陣列 * 係統 -> 系統 斐波那契數列 -> 費波那契數列 運算元量 -> 運算量 引數 -> 參數 * 聯絡 -> 關聯 * 麵試 -> 面試 * 面向物件 -> 物件導向 歸併排序 -> 合併排序 范式 -> 範式 * Fix 算法 -> 演算法 * 錶示 -> 表示 反碼 -> 一補數 補碼 -> 二補數 列列尾部 -> 佇列尾部 區域性性 -> 區域性 一摞 -> 一疊 * Synchronize with main branch * 賬號 -> 帳號 推匯 -> 推導 * Sync with main branch * Update terminology.md * 操作数量(num. of operations)-> 操作數量 * 字首和->前綴和 * Update figures * 歸 -> 迴 記憶體洩漏 -> 記憶體流失 * Fix the bug of the file filter * 支援 -> 支持 Add zh-Hant/README.md * Add the zh-Hant chapter covers. Bug fixes. * 外掛 -> 擴充功能 * Add the landing page for zh-Hant version * Unify the font of the chapter covers for the zh, en, and zh-Hant version * Move zh-Hant/ to zh-hant/ * Translate terminology.md to traditional Chinese
2024-04-06 02:30:11 +08:00
"""
File: subset_sum_i_naive.py
Created Time: 2023-06-17
Author: krahets (krahets@163.com)
"""
def backtrack(
state: list[int],
target: int,
total: int,
choices: list[int],
res: list[list[int]],
):
"""回溯演算法:子集和 I"""
# 子集和等於 target 時,記錄解
if total == target:
res.append(list(state))
return
# 走訪所有選擇
for i in range(len(choices)):
# 剪枝:若子集和超過 target ,則跳過該選擇
if total + choices[i] > target:
continue
# 嘗試:做出選擇,更新元素和 total
state.append(choices[i])
# 進行下一輪選擇
backtrack(state, target, total + choices[i], choices, res)
# 回退:撤銷選擇,恢復到之前的狀態
state.pop()
def subset_sum_i_naive(nums: list[int], target: int) -> list[list[int]]:
"""求解子集和 I包含重複子集"""
state = [] # 狀態(子集)
total = 0 # 子集和
res = [] # 結果串列(子集串列)
backtrack(state, target, total, nums, res)
return res
"""Driver Code"""
if __name__ == "__main__":
nums = [3, 4, 5]
target = 9
res = subset_sum_i_naive(nums, target)
print(f"輸入陣列 nums = {nums}, target = {target}")
print(f"所有和等於 {target} 的子集 res = {res}")
print(f"請注意,該方法輸出的結果包含重複集合")