mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-26 21:16:28 +08:00
161 lines
4.7 KiB
C#
161 lines
4.7 KiB
C#
|
/**
|
|||
|
* File: binary_search_tree.cs
|
|||
|
* Created Time: 2022-12-23
|
|||
|
* Author: haptear (haptear@hotmail.com)
|
|||
|
*/
|
|||
|
|
|||
|
namespace hello_algo.chapter_tree;
|
|||
|
|
|||
|
class BinarySearchTree {
|
|||
|
TreeNode? root;
|
|||
|
|
|||
|
public BinarySearchTree() {
|
|||
|
// 初始化空樹
|
|||
|
root = null;
|
|||
|
}
|
|||
|
|
|||
|
/* 獲取二元樹根節點 */
|
|||
|
public TreeNode? GetRoot() {
|
|||
|
return root;
|
|||
|
}
|
|||
|
|
|||
|
/* 查詢節點 */
|
|||
|
public TreeNode? Search(int num) {
|
|||
|
TreeNode? cur = root;
|
|||
|
// 迴圈查詢,越過葉節點後跳出
|
|||
|
while (cur != null) {
|
|||
|
// 目標節點在 cur 的右子樹中
|
|||
|
if (cur.val < num) cur =
|
|||
|
cur.right;
|
|||
|
// 目標節點在 cur 的左子樹中
|
|||
|
else if (cur.val > num)
|
|||
|
cur = cur.left;
|
|||
|
// 找到目標節點,跳出迴圈
|
|||
|
else
|
|||
|
break;
|
|||
|
}
|
|||
|
// 返回目標節點
|
|||
|
return cur;
|
|||
|
}
|
|||
|
|
|||
|
/* 插入節點 */
|
|||
|
public void Insert(int num) {
|
|||
|
// 若樹為空,則初始化根節點
|
|||
|
if (root == null) {
|
|||
|
root = new TreeNode(num);
|
|||
|
return;
|
|||
|
}
|
|||
|
TreeNode? cur = root, pre = null;
|
|||
|
// 迴圈查詢,越過葉節點後跳出
|
|||
|
while (cur != null) {
|
|||
|
// 找到重複節點,直接返回
|
|||
|
if (cur.val == num)
|
|||
|
return;
|
|||
|
pre = cur;
|
|||
|
// 插入位置在 cur 的右子樹中
|
|||
|
if (cur.val < num)
|
|||
|
cur = cur.right;
|
|||
|
// 插入位置在 cur 的左子樹中
|
|||
|
else
|
|||
|
cur = cur.left;
|
|||
|
}
|
|||
|
|
|||
|
// 插入節點
|
|||
|
TreeNode node = new(num);
|
|||
|
if (pre != null) {
|
|||
|
if (pre.val < num)
|
|||
|
pre.right = node;
|
|||
|
else
|
|||
|
pre.left = node;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* 刪除節點 */
|
|||
|
public void Remove(int num) {
|
|||
|
// 若樹為空,直接提前返回
|
|||
|
if (root == null)
|
|||
|
return;
|
|||
|
TreeNode? cur = root, pre = null;
|
|||
|
// 迴圈查詢,越過葉節點後跳出
|
|||
|
while (cur != null) {
|
|||
|
// 找到待刪除節點,跳出迴圈
|
|||
|
if (cur.val == num)
|
|||
|
break;
|
|||
|
pre = cur;
|
|||
|
// 待刪除節點在 cur 的右子樹中
|
|||
|
if (cur.val < num)
|
|||
|
cur = cur.right;
|
|||
|
// 待刪除節點在 cur 的左子樹中
|
|||
|
else
|
|||
|
cur = cur.left;
|
|||
|
}
|
|||
|
// 若無待刪除節點,則直接返回
|
|||
|
if (cur == null)
|
|||
|
return;
|
|||
|
// 子節點數量 = 0 or 1
|
|||
|
if (cur.left == null || cur.right == null) {
|
|||
|
// 當子節點數量 = 0 / 1 時, child = null / 該子節點
|
|||
|
TreeNode? child = cur.left ?? cur.right;
|
|||
|
// 刪除節點 cur
|
|||
|
if (cur != root) {
|
|||
|
if (pre!.left == cur)
|
|||
|
pre.left = child;
|
|||
|
else
|
|||
|
pre.right = child;
|
|||
|
} else {
|
|||
|
// 若刪除節點為根節點,則重新指定根節點
|
|||
|
root = child;
|
|||
|
}
|
|||
|
}
|
|||
|
// 子節點數量 = 2
|
|||
|
else {
|
|||
|
// 獲取中序走訪中 cur 的下一個節點
|
|||
|
TreeNode? tmp = cur.right;
|
|||
|
while (tmp.left != null) {
|
|||
|
tmp = tmp.left;
|
|||
|
}
|
|||
|
// 遞迴刪除節點 tmp
|
|||
|
Remove(tmp.val!.Value);
|
|||
|
// 用 tmp 覆蓋 cur
|
|||
|
cur.val = tmp.val;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
public class binary_search_tree {
|
|||
|
[Test]
|
|||
|
public void Test() {
|
|||
|
/* 初始化二元搜尋樹 */
|
|||
|
BinarySearchTree bst = new();
|
|||
|
// 請注意,不同的插入順序會生成不同的二元樹,該序列可以生成一個完美二元樹
|
|||
|
int[] nums = [8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15];
|
|||
|
foreach (int num in nums) {
|
|||
|
bst.Insert(num);
|
|||
|
}
|
|||
|
|
|||
|
Console.WriteLine("\n初始化的二元樹為\n");
|
|||
|
PrintUtil.PrintTree(bst.GetRoot());
|
|||
|
|
|||
|
/* 查詢節點 */
|
|||
|
TreeNode? node = bst.Search(7);
|
|||
|
Console.WriteLine("\n查詢到的節點物件為 " + node + ",節點值 = " + node?.val);
|
|||
|
|
|||
|
/* 插入節點 */
|
|||
|
bst.Insert(16);
|
|||
|
Console.WriteLine("\n插入節點 16 後,二元樹為\n");
|
|||
|
PrintUtil.PrintTree(bst.GetRoot());
|
|||
|
|
|||
|
/* 刪除節點 */
|
|||
|
bst.Remove(1);
|
|||
|
Console.WriteLine("\n刪除節點 1 後,二元樹為\n");
|
|||
|
PrintUtil.PrintTree(bst.GetRoot());
|
|||
|
bst.Remove(2);
|
|||
|
Console.WriteLine("\n刪除節點 2 後,二元樹為\n");
|
|||
|
PrintUtil.PrintTree(bst.GetRoot());
|
|||
|
bst.Remove(4);
|
|||
|
Console.WriteLine("\n刪除節點 4 後,二元樹為\n");
|
|||
|
PrintUtil.PrintTree(bst.GetRoot());
|
|||
|
}
|
|||
|
}
|