hello-algo/en/codes/cpp/chapter_computational_complexity/space_complexity.cpp

108 lines
2.4 KiB
C++
Raw Normal View History

/**
* File: space_complexity.cpp
* Created Time: 2022-11-25
* Author: krahets (krahets@163.com)
*/
#include "../utils/common.hpp"
/* Function */
int func() {
// Perform some operations
return 0;
}
/* Constant complexity */
void constant(int n) {
// Constants, variables, objects occupy O(1) space
const int a = 0;
int b = 0;
vector<int> nums(10000);
ListNode node(0);
// Variables in a loop occupy O(1) space
for (int i = 0; i < n; i++) {
int c = 0;
}
// Functions in a loop occupy O(1) space
for (int i = 0; i < n; i++) {
func();
}
}
/* Linear complexity */
void linear(int n) {
// Array of length n occupies O(n) space
vector<int> nums(n);
// A list of length n occupies O(n) space
vector<ListNode> nodes;
for (int i = 0; i < n; i++) {
nodes.push_back(ListNode(i));
}
// A hash table of length n occupies O(n) space
unordered_map<int, string> map;
for (int i = 0; i < n; i++) {
map[i] = to_string(i);
}
}
/* Linear complexity (recursive implementation) */
void linearRecur(int n) {
cout << "Recursion n = " << n << endl;
if (n == 1)
return;
linearRecur(n - 1);
}
/* Quadratic complexity */
void quadratic(int n) {
// A two-dimensional list occupies O(n^2) space
vector<vector<int>> numMatrix;
for (int i = 0; i < n; i++) {
vector<int> tmp;
for (int j = 0; j < n; j++) {
tmp.push_back(0);
}
numMatrix.push_back(tmp);
}
}
/* Quadratic complexity (recursive implementation) */
int quadraticRecur(int n) {
if (n <= 0)
return 0;
vector<int> nums(n);
cout << "Recursive n = " << n << ", length of nums = " << nums.size() << endl;
return quadraticRecur(n - 1);
}
/* Exponential complexity (building a full binary tree) */
TreeNode *buildTree(int n) {
if (n == 0)
return nullptr;
TreeNode *root = new TreeNode(0);
root->left = buildTree(n - 1);
root->right = buildTree(n - 1);
return root;
}
/* Driver Code */
int main() {
int n = 5;
// Constant complexity
constant(n);
// Linear complexity
linear(n);
linearRecur(n);
// Quadratic complexity
quadratic(n);
quadraticRecur(n);
// Exponential complexity
TreeNode *root = buildTree(n);
printTree(root);
// Free memory
freeMemoryTree(root);
return 0;
}