hello-algo/codes/rust/chapter_computational_complexity/time_complexity.rs

170 lines
4 KiB
Rust
Raw Normal View History

/**
* File: time_complexity.rs
* Created Time: 2023-01-10
* Author: xBLACICEx (xBLACKICEx@outlook.com)
*/
#[allow(unused_variables)]
/* 常数阶 */
fn constant(n: i32) -> i32 {
let mut count = 0;
let size = 100000;
for _ in 0..size {
count += 1
}
count
}
/* 线性阶 */
fn linear(n: i32) -> i32 {
let mut count = 0;
for _ in 0..n {
count += 1;
}
count
}
/* 线性阶(遍历数组) */
fn array_traversal(nums: &[i32]) -> i32 {
let mut count = 0;
// 循环次数与数组长度成正比
for _ in nums {
count += 1;
}
count
}
fn quadratic(n: i32) -> i32 {
let mut count = 0;
// 循环次数与数组长度成平方关系
for _ in 0..n {
for _ in 0..n {
count += 1;
}
}
count
}
/* 平方阶(冒泡排序) */
fn bubble_sort(nums: &mut [i32]) -> i32 {
let mut count = 0; // 计数器
// 外循环:待排序元素数量为 n-1, n-2, ..., 1
for i in (1..nums.len()).rev() {
// 内循环:冒泡操作
for j in 0..i {
if nums[j] > nums[j + 1] {
// 交换 nums[j] 与 nums[j + 1]
let tmp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = tmp;
count += 3; // 元素交换包含 3 个单元操作
}
}
}
count
}
/* 指数阶(循环实现) */
fn exponential(n: i32) -> i32 {
let mut count = 0;
let mut base = 1;
// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
for _ in 0..n {
for _ in 0..base {
count += 1
}
base *= 2;
}
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
count
}
/* 指数阶(递归实现) */
fn exp_recur(n: i32) -> i32 {
if n == 1 {
return 1;
}
exp_recur(n - 1) + exp_recur(n - 1) + 1
}
/* 对数阶(循环实现) */
fn logarithmic(mut n: i32) -> i32 {
let mut count = 0;
while n > 1 {
n = n / 2;
count += 1;
}
count
}
/* 对数阶(递归实现) */
fn log_recur(n: i32) -> i32 {
if n <= 1 {
return 0;
}
log_recur(n / 2) + 1
}
/* 线性对数阶 */
fn linear_log_recur(n: f64) -> i32 {
if n <= 1.0 {
return 1;
}
let mut count = linear_log_recur(n / 2.0) + linear_log_recur(n / 2.0);
for _ in 0 ..n as i32 {
count += 1;
}
return count
}
/* 阶乘阶(递归实现) */
fn factorial_recur(n: i32) -> i32 {
if n == 0 {
return 1;
}
let mut count = 0;
// 从 1 个分裂出 n 个
for _ in 0..n {
count += factorial_recur(n - 1);
}
count
}
/* Driver Code */
fn main() {
// 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势
let n: i32 = 8;
println!("输入数据大小 n = {}", n);
let mut count = constant(n);
println!("常数阶的计算操作数量 = {}", count);
count = linear(n);
println!("线性阶的计算操作数量 = {}", count);
count = array_traversal(&vec![0; n as usize]);
println!("线性阶(遍历数组)的计算操作数量 = {}", count);
count = quadratic(n);
println!("平方阶的计算操作数量 = {}", count);
let mut nums = (1..=n).rev().collect::<Vec<_>>(); // [n,n-1,...,2,1]
count = bubble_sort(&mut nums);
println!("平方阶(冒泡排序)的计算操作数量 = {}", count);
count = exponential(n);
println!("指数阶(循环实现)的计算操作数量 = {}", count);
count = exp_recur(n);
println!("指数阶(递归实现)的计算操作数量 = {}", count);
count = logarithmic(n);
println!("对数阶(循环实现)的计算操作数量 = {}", count);
count = log_recur(n);
println!("对数阶(递归实现)的计算操作数量 = {}", count);
count = linear_log_recur(n.into());
println!("线性对数阶(递归实现)的计算操作数量 = {}", count);
count = factorial_recur(n);
println!("阶乘阶(递归实现)的计算操作数量 = {}", count);
}