mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-27 00:06:28 +08:00
159 lines
4 KiB
JavaScript
159 lines
4 KiB
JavaScript
|
/**
|
||
|
* File: my_heap.js
|
||
|
* Created Time: 2023-02-06
|
||
|
* Author: what-is-me (whatisme@outlook.jp)
|
||
|
*/
|
||
|
|
||
|
const { printHeap } = require('../modules/PrintUtil');
|
||
|
|
||
|
/* 最大堆積類別 */
|
||
|
class MaxHeap {
|
||
|
#maxHeap;
|
||
|
|
||
|
/* 建構子,建立空堆積或根據輸入串列建堆積 */
|
||
|
constructor(nums) {
|
||
|
// 將串列元素原封不動新增進堆積
|
||
|
this.#maxHeap = nums === undefined ? [] : [...nums];
|
||
|
// 堆積化除葉節點以外的其他所有節點
|
||
|
for (let i = this.#parent(this.size() - 1); i >= 0; i--) {
|
||
|
this.#siftDown(i);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* 獲取左子節點的索引 */
|
||
|
#left(i) {
|
||
|
return 2 * i + 1;
|
||
|
}
|
||
|
|
||
|
/* 獲取右子節點的索引 */
|
||
|
#right(i) {
|
||
|
return 2 * i + 2;
|
||
|
}
|
||
|
|
||
|
/* 獲取父節點的索引 */
|
||
|
#parent(i) {
|
||
|
return Math.floor((i - 1) / 2); // 向下整除
|
||
|
}
|
||
|
|
||
|
/* 交換元素 */
|
||
|
#swap(i, j) {
|
||
|
const tmp = this.#maxHeap[i];
|
||
|
this.#maxHeap[i] = this.#maxHeap[j];
|
||
|
this.#maxHeap[j] = tmp;
|
||
|
}
|
||
|
|
||
|
/* 獲取堆積大小 */
|
||
|
size() {
|
||
|
return this.#maxHeap.length;
|
||
|
}
|
||
|
|
||
|
/* 判斷堆積是否為空 */
|
||
|
isEmpty() {
|
||
|
return this.size() === 0;
|
||
|
}
|
||
|
|
||
|
/* 訪問堆積頂元素 */
|
||
|
peek() {
|
||
|
return this.#maxHeap[0];
|
||
|
}
|
||
|
|
||
|
/* 元素入堆積 */
|
||
|
push(val) {
|
||
|
// 新增節點
|
||
|
this.#maxHeap.push(val);
|
||
|
// 從底至頂堆積化
|
||
|
this.#siftUp(this.size() - 1);
|
||
|
}
|
||
|
|
||
|
/* 從節點 i 開始,從底至頂堆積化 */
|
||
|
#siftUp(i) {
|
||
|
while (true) {
|
||
|
// 獲取節點 i 的父節點
|
||
|
const p = this.#parent(i);
|
||
|
// 當“越過根節點”或“節點無須修復”時,結束堆積化
|
||
|
if (p < 0 || this.#maxHeap[i] <= this.#maxHeap[p]) break;
|
||
|
// 交換兩節點
|
||
|
this.#swap(i, p);
|
||
|
// 迴圈向上堆積化
|
||
|
i = p;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* 元素出堆積 */
|
||
|
pop() {
|
||
|
// 判空處理
|
||
|
if (this.isEmpty()) throw new Error('堆積為空');
|
||
|
// 交換根節點與最右葉節點(交換首元素與尾元素)
|
||
|
this.#swap(0, this.size() - 1);
|
||
|
// 刪除節點
|
||
|
const val = this.#maxHeap.pop();
|
||
|
// 從頂至底堆積化
|
||
|
this.#siftDown(0);
|
||
|
// 返回堆積頂元素
|
||
|
return val;
|
||
|
}
|
||
|
|
||
|
/* 從節點 i 開始,從頂至底堆積化 */
|
||
|
#siftDown(i) {
|
||
|
while (true) {
|
||
|
// 判斷節點 i, l, r 中值最大的節點,記為 ma
|
||
|
const l = this.#left(i),
|
||
|
r = this.#right(i);
|
||
|
let ma = i;
|
||
|
if (l < this.size() && this.#maxHeap[l] > this.#maxHeap[ma]) ma = l;
|
||
|
if (r < this.size() && this.#maxHeap[r] > this.#maxHeap[ma]) ma = r;
|
||
|
// 若節點 i 最大或索引 l, r 越界,則無須繼續堆積化,跳出
|
||
|
if (ma === i) break;
|
||
|
// 交換兩節點
|
||
|
this.#swap(i, ma);
|
||
|
// 迴圈向下堆積化
|
||
|
i = ma;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* 列印堆積(二元樹) */
|
||
|
print() {
|
||
|
printHeap(this.#maxHeap);
|
||
|
}
|
||
|
|
||
|
/* 取出堆積中元素 */
|
||
|
getMaxHeap() {
|
||
|
return this.#maxHeap;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Driver Code */
|
||
|
if (require.main === module) {
|
||
|
/* 初始化大頂堆積 */
|
||
|
const maxHeap = new MaxHeap([9, 8, 6, 6, 7, 5, 2, 1, 4, 3, 6, 2]);
|
||
|
console.log('\n輸入串列並建堆積後');
|
||
|
maxHeap.print();
|
||
|
|
||
|
/* 獲取堆積頂元素 */
|
||
|
let peek = maxHeap.peek();
|
||
|
console.log(`\n堆積頂元素為 ${peek}`);
|
||
|
|
||
|
/* 元素入堆積 */
|
||
|
let val = 7;
|
||
|
maxHeap.push(val);
|
||
|
console.log(`\n元素 ${val} 入堆積後`);
|
||
|
maxHeap.print();
|
||
|
|
||
|
/* 堆積頂元素出堆積 */
|
||
|
peek = maxHeap.pop();
|
||
|
console.log(`\n堆積頂元素 ${peek} 出堆積後`);
|
||
|
maxHeap.print();
|
||
|
|
||
|
/* 獲取堆積大小 */
|
||
|
let size = maxHeap.size();
|
||
|
console.log(`\n堆積元素數量為 ${size}`);
|
||
|
|
||
|
/* 判斷堆積是否為空 */
|
||
|
let isEmpty = maxHeap.isEmpty();
|
||
|
console.log(`\n堆積是否為空 ${isEmpty}`);
|
||
|
}
|
||
|
|
||
|
module.exports = {
|
||
|
MaxHeap,
|
||
|
};
|