mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-27 14:56:29 +08:00
201 lines
6.8 KiB
Python
201 lines
6.8 KiB
Python
|
"""
|
||
|
File: avl_tree.py
|
||
|
Created Time: 2022-12-20
|
||
|
Author: a16su (lpluls001@gmail.com)
|
||
|
"""
|
||
|
|
||
|
import sys
|
||
|
from pathlib import Path
|
||
|
|
||
|
sys.path.append(str(Path(__file__).parent.parent))
|
||
|
from modules import TreeNode, print_tree
|
||
|
|
||
|
|
||
|
class AVLTree:
|
||
|
"""AVL tree"""
|
||
|
|
||
|
def __init__(self):
|
||
|
"""Constructor"""
|
||
|
self._root = None
|
||
|
|
||
|
def get_root(self) -> TreeNode | None:
|
||
|
"""Get binary tree root node"""
|
||
|
return self._root
|
||
|
|
||
|
def height(self, node: TreeNode | None) -> int:
|
||
|
"""Get node height"""
|
||
|
# Empty node height is -1, leaf node height is 0
|
||
|
if node is not None:
|
||
|
return node.height
|
||
|
return -1
|
||
|
|
||
|
def update_height(self, node: TreeNode | None):
|
||
|
"""Update node height"""
|
||
|
# Node height equals the height of the tallest subtree + 1
|
||
|
node.height = max([self.height(node.left), self.height(node.right)]) + 1
|
||
|
|
||
|
def balance_factor(self, node: TreeNode | None) -> int:
|
||
|
"""Get balance factor"""
|
||
|
# Empty node balance factor is 0
|
||
|
if node is None:
|
||
|
return 0
|
||
|
# Node balance factor = left subtree height - right subtree height
|
||
|
return self.height(node.left) - self.height(node.right)
|
||
|
|
||
|
def right_rotate(self, node: TreeNode | None) -> TreeNode | None:
|
||
|
"""Right rotation operation"""
|
||
|
child = node.left
|
||
|
grand_child = child.right
|
||
|
# Rotate node to the right around child
|
||
|
child.right = node
|
||
|
node.left = grand_child
|
||
|
# Update node height
|
||
|
self.update_height(node)
|
||
|
self.update_height(child)
|
||
|
# Return the root of the subtree after rotation
|
||
|
return child
|
||
|
|
||
|
def left_rotate(self, node: TreeNode | None) -> TreeNode | None:
|
||
|
"""Left rotation operation"""
|
||
|
child = node.right
|
||
|
grand_child = child.left
|
||
|
# Rotate node to the left around child
|
||
|
child.left = node
|
||
|
node.right = grand_child
|
||
|
# Update node height
|
||
|
self.update_height(node)
|
||
|
self.update_height(child)
|
||
|
# Return the root of the subtree after rotation
|
||
|
return child
|
||
|
|
||
|
def rotate(self, node: TreeNode | None) -> TreeNode | None:
|
||
|
"""Perform rotation operation to restore balance to the subtree"""
|
||
|
# Get the balance factor of node
|
||
|
balance_factor = self.balance_factor(node)
|
||
|
# Left-leaning tree
|
||
|
if balance_factor > 1:
|
||
|
if self.balance_factor(node.left) >= 0:
|
||
|
# Right rotation
|
||
|
return self.right_rotate(node)
|
||
|
else:
|
||
|
# First left rotation then right rotation
|
||
|
node.left = self.left_rotate(node.left)
|
||
|
return self.right_rotate(node)
|
||
|
# Right-leaning tree
|
||
|
elif balance_factor < -1:
|
||
|
if self.balance_factor(node.right) <= 0:
|
||
|
# Left rotation
|
||
|
return self.left_rotate(node)
|
||
|
else:
|
||
|
# First right rotation then left rotation
|
||
|
node.right = self.right_rotate(node.right)
|
||
|
return self.left_rotate(node)
|
||
|
# Balanced tree, no rotation needed, return
|
||
|
return node
|
||
|
|
||
|
def insert(self, val):
|
||
|
"""Insert node"""
|
||
|
self._root = self.insert_helper(self._root, val)
|
||
|
|
||
|
def insert_helper(self, node: TreeNode | None, val: int) -> TreeNode:
|
||
|
"""Recursively insert node (helper method)"""
|
||
|
if node is None:
|
||
|
return TreeNode(val)
|
||
|
# 1. Find insertion position and insert node
|
||
|
if val < node.val:
|
||
|
node.left = self.insert_helper(node.left, val)
|
||
|
elif val > node.val:
|
||
|
node.right = self.insert_helper(node.right, val)
|
||
|
else:
|
||
|
# Do not insert duplicate nodes, return
|
||
|
return node
|
||
|
# Update node height
|
||
|
self.update_height(node)
|
||
|
# 2. Perform rotation operation to restore balance to the subtree
|
||
|
return self.rotate(node)
|
||
|
|
||
|
def remove(self, val: int):
|
||
|
"""Remove node"""
|
||
|
self._root = self.remove_helper(self._root, val)
|
||
|
|
||
|
def remove_helper(self, node: TreeNode | None, val: int) -> TreeNode | None:
|
||
|
"""Recursively remove node (helper method)"""
|
||
|
if node is None:
|
||
|
return None
|
||
|
# 1. Find and remove the node
|
||
|
if val < node.val:
|
||
|
node.left = self.remove_helper(node.left, val)
|
||
|
elif val > node.val:
|
||
|
node.right = self.remove_helper(node.right, val)
|
||
|
else:
|
||
|
if node.left is None or node.right is None:
|
||
|
child = node.left or node.right
|
||
|
# Number of child nodes = 0, remove node and return
|
||
|
if child is None:
|
||
|
return None
|
||
|
# Number of child nodes = 1, remove node
|
||
|
else:
|
||
|
node = child
|
||
|
else:
|
||
|
# Number of child nodes = 2, remove the next node in in-order traversal and replace the current node with it
|
||
|
temp = node.right
|
||
|
while temp.left is not None:
|
||
|
temp = temp.left
|
||
|
node.right = self.remove_helper(node.right, temp.val)
|
||
|
node.val = temp.val
|
||
|
# Update node height
|
||
|
self.update_height(node)
|
||
|
# 2. Perform rotation operation to restore balance to the subtree
|
||
|
return self.rotate(node)
|
||
|
|
||
|
def search(self, val: int) -> TreeNode | None:
|
||
|
"""Search node"""
|
||
|
cur = self._root
|
||
|
# Loop find, break after passing leaf nodes
|
||
|
while cur is not None:
|
||
|
# Target node is in cur's right subtree
|
||
|
if cur.val < val:
|
||
|
cur = cur.right
|
||
|
# Target node is in cur's left subtree
|
||
|
elif cur.val > val:
|
||
|
cur = cur.left
|
||
|
# Found target node, break loop
|
||
|
else:
|
||
|
break
|
||
|
# Return target node
|
||
|
return cur
|
||
|
|
||
|
|
||
|
"""Driver Code"""
|
||
|
if __name__ == "__main__":
|
||
|
|
||
|
def test_insert(tree: AVLTree, val: int):
|
||
|
tree.insert(val)
|
||
|
print("\nInsert node {} after, AVL tree is".format(val))
|
||
|
print_tree(tree.get_root())
|
||
|
|
||
|
def test_remove(tree: AVLTree, val: int):
|
||
|
tree.remove(val)
|
||
|
print("\nRemove node {} after, AVL tree is".format(val))
|
||
|
print_tree(tree.get_root())
|
||
|
|
||
|
# Initialize empty AVL tree
|
||
|
avl_tree = AVLTree()
|
||
|
|
||
|
# Insert node
|
||
|
# Notice how the AVL tree maintains balance after inserting nodes
|
||
|
for val in [1, 2, 3, 4, 5, 8, 7, 9, 10, 6]:
|
||
|
test_insert(avl_tree, val)
|
||
|
|
||
|
# Insert duplicate node
|
||
|
test_insert(avl_tree, 7)
|
||
|
|
||
|
# Remove node
|
||
|
# Notice how the AVL tree maintains balance after removing nodes
|
||
|
test_remove(avl_tree, 8) # Remove node with degree 0
|
||
|
test_remove(avl_tree, 5) # Remove node with degree 1
|
||
|
test_remove(avl_tree, 4) # Remove node with degree 2
|
||
|
|
||
|
result_node = avl_tree.search(7)
|
||
|
print("\nFound node object is {}, node value = {}".format(result_node, result_node.val))
|