hello-algo/codes/swift/chapter_computational_complexity/time_complexity.swift

172 lines
4.2 KiB
Swift
Raw Normal View History

/**
* File: time_complexity.swift
* Created Time: 2022-12-26
* Author: nuomi1 (nuomi1@qq.com)
*/
//
func constant(n: Int) -> Int {
var count = 0
let size = 100_000
for _ in 0 ..< size {
count += 1
}
return count
}
// 线
func linear(n: Int) -> Int {
var count = 0
for _ in 0 ..< n {
count += 1
}
return count
}
// 线
func arrayTraversal(nums: [Int]) -> Int {
var count = 0
//
for _ in nums {
count += 1
}
return count
}
//
func quadratic(n: Int) -> Int {
var count = 0
//
for _ in 0 ..< n {
for _ in 0 ..< n {
count += 1
}
}
return count
}
//
func bubbleSort(nums: inout [Int]) -> Int {
var count = 0 //
// n-1, n-2, ..., 1
for i in sequence(first: nums.count - 1, next: { $0 > 0 ? $0 - 1 : nil }) {
//
for j in 0 ..< i {
if nums[j] > nums[j + 1] {
// nums[j] nums[j + 1]
let tmp = nums[j]
nums[j] = nums[j + 1]
nums[j + 1] = tmp
count += 3 // 3
}
}
}
return count
}
//
func exponential(n: Int) -> Int {
var count = 0
var base = 1
// cell 1, 2, 4, 8, ..., 2^(n-1)
for _ in 0 ..< n {
for _ in 0 ..< base {
count += 1
}
base *= 2
}
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count
}
//
func expRecur(n: Int) -> Int {
if n == 1 {
return 1
}
return expRecur(n: n - 1) + expRecur(n: n - 1) + 1
}
//
func logarithmic(n: Int) -> Int {
var count = 0
var n = n
while n > 1 {
n = n / 2
count += 1
}
return count
}
//
func logRecur(n: Int) -> Int {
if n <= 1 {
return 0
}
return logRecur(n: n / 2) + 1
}
// 线
func linearLogRecur(n: Double) -> Int {
if n <= 1 {
return 1
}
var count = linearLogRecur(n: n / 2) + linearLogRecur(n: n / 2)
for _ in 0 ..< Int(n) {
count += 1
}
return count
}
//
func factorialRecur(n: Int) -> Int {
if n == 0 {
return 1
}
var count = 0
// 1 n
for _ in 0 ..< n {
count += factorialRecur(n: n - 1)
}
return count
}
@main
enum TimeComplexity {
static func main() {
// n
let n = 8
print("输入数据大小 n =", n)
var count = constant(n: n)
print("常数阶的计算操作数量 =", count)
count = linear(n: n)
print("线性阶的计算操作数量 =", count)
count = arrayTraversal(nums: Array(repeating: 0, count: n))
print("线性阶(遍历数组)的计算操作数量 =", count)
count = quadratic(n: n)
print("平方阶的计算操作数量 =", count)
var nums = Array(sequence(first: n, next: { $0 > 0 ? $0 - 1 : nil })) // [n,n-1,...,2,1]
count = bubbleSort(nums: &nums)
print("平方阶(冒泡排序)的计算操作数量 =", count)
count = exponential(n: n)
print("指数阶(循环实现)的计算操作数量 =", count)
count = expRecur(n: n)
print("指数阶(递归实现)的计算操作数量 =", count)
count = logarithmic(n: n)
print("对数阶(循环实现)的计算操作数量 =", count)
count = logRecur(n: n)
print("对数阶(递归实现)的计算操作数量 =", count)
count = linearLogRecur(n: Double(n))
print("线性对数阶(递归实现)的计算操作数量 =", count)
count = factorialRecur(n: n)
print("阶乘阶(递归实现)的计算操作数量 =", count)
}
}