hello-algo/codes/csharp/chapter_tree/binary_search_tree.cs

183 lines
5.9 KiB
Java
Raw Normal View History

/**
* File: binary_search_tree.cs
* Created Time: 2022-12-23
* Author: haptear (haptear@hotmail.com)
*/
2022-12-23 15:42:02 +08:00
using hello_algo.include;
using NUnit.Framework;
2022-12-23 15:42:02 +08:00
namespace hello_algo.chapter_tree
{
2022-12-24 16:15:41 +08:00
class BinarySearchTree
2022-12-23 15:42:02 +08:00
{
TreeNode? root;
2022-12-24 16:15:41 +08:00
public BinarySearchTree(int[] nums) {
Array.Sort(nums); // 排序数组
root = buildTree(nums, 0, nums.Length - 1); // 构建二叉搜索树
}
/* 获取二叉树根结点 */
public TreeNode? getRoot() {
return root;
}
/* 构建二叉搜索树 */
public TreeNode? buildTree(int[] nums, int i, int j) {
if (i > j) return null;
// 将数组中间结点作为根结点
int mid = (i + j) / 2;
TreeNode root = new TreeNode(nums[mid]);
// 递归建立左子树和右子树
root.left = buildTree(nums, i, mid - 1);
root.right = buildTree(nums, mid + 1, j);
return root;
}
2023-01-10 01:49:16 +08:00
/* 查找结点 */
2022-12-24 16:15:41 +08:00
public TreeNode? search(int num)
2022-12-23 15:42:02 +08:00
{
TreeNode? cur = root;
// 循环查找,越过叶结点后跳出
while (cur != null)
{
// 目标结点在 root 的右子树中
if (cur.val < num) cur = cur.right;
// 目标结点在 root 的左子树中
else if (cur.val > num) cur = cur.left;
// 找到目标结点,跳出循环
else break;
}
// 返回目标结点
return cur;
}
/* 插入结点 */
2022-12-24 16:15:41 +08:00
public TreeNode? insert(int num)
2022-12-23 15:42:02 +08:00
{
// 若树为空,直接提前返回
if (root == null) return null;
TreeNode? cur = root, pre = null;
// 循环查找,越过叶结点后跳出
while (cur != null)
{
// 找到重复结点,直接返回
if (cur.val == num) return null;
pre = cur;
// 插入位置在 root 的右子树中
if (cur.val < num) cur = cur.right;
// 插入位置在 root 的左子树中
else cur = cur.left;
}
// 插入结点 val
TreeNode node = new TreeNode(num);
if (pre != null)
{
if (pre.val < num) pre.right = node;
else pre.left = node;
}
return node;
}
/* 删除结点 */
2022-12-24 16:15:41 +08:00
public TreeNode? remove(int num)
2022-12-23 15:42:02 +08:00
{
// 若树为空,直接提前返回
if (root == null) return null;
TreeNode? cur = root, pre = null;
// 循环查找,越过叶结点后跳出
while (cur != null)
{
// 找到待删除结点,跳出循环
if (cur.val == num) break;
pre = cur;
// 待删除结点在 cur 的右子树中
2022-12-23 15:42:02 +08:00
if (cur.val < num) cur = cur.right;
// 待删除结点在 cur 的左子树中
2022-12-23 15:42:02 +08:00
else cur = cur.left;
}
// 若无待删除结点,则直接返回
if (cur == null || pre == null) return null;
// 子结点数量 = 0 or 1
if (cur.left == null || cur.right == null)
{
// 当子结点数量 = 0 / 1 时, child = null / 该子结点
TreeNode? child = cur.left != null ? cur.left : cur.right;
// 删除结点 cur
if (pre.left == cur)
{
pre.left = child;
}
else
{
pre.right = child;
}
}
// 子结点数量 = 2
else
{
// 获取中序遍历中 cur 的下一个结点
TreeNode? nex = getInOrderNext(cur.right);
2022-12-23 15:42:02 +08:00
if (nex != null)
{
2022-12-24 16:15:41 +08:00
int tmp = nex.val;
2022-12-23 15:42:02 +08:00
// 递归删除结点 nex
remove(nex.val);
// 将 nex 的值复制给 cur
cur.val = tmp;
}
}
return cur;
}
/* 获取中序遍历中的下一个结点(仅适用于 root 有左子结点的情况) */
private TreeNode? getInOrderNext(TreeNode? root)
2022-12-23 15:42:02 +08:00
{
if (root == null) return root;
// 循环访问左子结点,直到叶结点时为最小结点,跳出
while (root.left != null)
{
root = root.left;
}
return root;
}
2022-12-24 16:15:41 +08:00
}
2022-12-23 15:42:02 +08:00
2022-12-24 16:15:41 +08:00
public class binary_search_tree
{
2022-12-23 15:42:02 +08:00
[Test]
public void Test()
{
2022-12-24 16:15:41 +08:00
/* 初始化二叉搜索树 */
int[] nums = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 };
BinarySearchTree bst = new BinarySearchTree(nums);
Console.WriteLine("\n初始化的二叉树为\n");
PrintUtil.PrintTree(bst.getRoot());
/* 查找结点 */
TreeNode? node = bst.search(7);
2022-12-24 16:15:41 +08:00
Console.WriteLine("\n查找到的结点对象为 " + node + ",结点值 = " + node.val);
/* 插入结点 */
node = bst.insert(16);
Console.WriteLine("\n插入结点 16 后,二叉树为\n");
PrintUtil.PrintTree(bst.getRoot());
2022-12-23 15:42:02 +08:00
2022-12-24 16:15:41 +08:00
/* 删除结点 */
bst.remove(1);
Console.WriteLine("\n删除结点 1 后,二叉树为\n");
PrintUtil.PrintTree(bst.getRoot());
bst.remove(2);
Console.WriteLine("\n删除结点 2 后,二叉树为\n");
PrintUtil.PrintTree(bst.getRoot());
bst.remove(4);
Console.WriteLine("\n删除结点 4 后,二叉树为\n");
PrintUtil.PrintTree(bst.getRoot());
2022-12-23 15:42:02 +08:00
}
}
}