mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-26 10:56:29 +08:00
169 lines
4.1 KiB
C++
169 lines
4.1 KiB
C++
|
/**
|
||
|
* File: time_complexity.cpp
|
||
|
* Created Time: 2022-11-25
|
||
|
* Author: krahets (krahets@163.com)
|
||
|
*/
|
||
|
|
||
|
#include "../utils/common.hpp"
|
||
|
|
||
|
/* 常數階 */
|
||
|
int constant(int n) {
|
||
|
int count = 0;
|
||
|
int size = 100000;
|
||
|
for (int i = 0; i < size; i++)
|
||
|
count++;
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
/* 線性階 */
|
||
|
int linear(int n) {
|
||
|
int count = 0;
|
||
|
for (int i = 0; i < n; i++)
|
||
|
count++;
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
/* 線性階(走訪陣列) */
|
||
|
int arrayTraversal(vector<int> &nums) {
|
||
|
int count = 0;
|
||
|
// 迴圈次數與陣列長度成正比
|
||
|
for (int num : nums) {
|
||
|
count++;
|
||
|
}
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
/* 平方階 */
|
||
|
int quadratic(int n) {
|
||
|
int count = 0;
|
||
|
// 迴圈次數與資料大小 n 成平方關係
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
for (int j = 0; j < n; j++) {
|
||
|
count++;
|
||
|
}
|
||
|
}
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
/* 平方階(泡沫排序) */
|
||
|
int bubbleSort(vector<int> &nums) {
|
||
|
int count = 0; // 計數器
|
||
|
// 外迴圈:未排序區間為 [0, i]
|
||
|
for (int i = nums.size() - 1; i > 0; i--) {
|
||
|
// 內迴圈:將未排序區間 [0, i] 中的最大元素交換至該區間的最右端
|
||
|
for (int j = 0; j < i; j++) {
|
||
|
if (nums[j] > nums[j + 1]) {
|
||
|
// 交換 nums[j] 與 nums[j + 1]
|
||
|
int tmp = nums[j];
|
||
|
nums[j] = nums[j + 1];
|
||
|
nums[j + 1] = tmp;
|
||
|
count += 3; // 元素交換包含 3 個單元操作
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
/* 指數階(迴圈實現) */
|
||
|
int exponential(int n) {
|
||
|
int count = 0, base = 1;
|
||
|
// 細胞每輪一分為二,形成數列 1, 2, 4, 8, ..., 2^(n-1)
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
for (int j = 0; j < base; j++) {
|
||
|
count++;
|
||
|
}
|
||
|
base *= 2;
|
||
|
}
|
||
|
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
/* 指數階(遞迴實現) */
|
||
|
int expRecur(int n) {
|
||
|
if (n == 1)
|
||
|
return 1;
|
||
|
return expRecur(n - 1) + expRecur(n - 1) + 1;
|
||
|
}
|
||
|
|
||
|
/* 對數階(迴圈實現) */
|
||
|
int logarithmic(int n) {
|
||
|
int count = 0;
|
||
|
while (n > 1) {
|
||
|
n = n / 2;
|
||
|
count++;
|
||
|
}
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
/* 對數階(遞迴實現) */
|
||
|
int logRecur(int n) {
|
||
|
if (n <= 1)
|
||
|
return 0;
|
||
|
return logRecur(n / 2) + 1;
|
||
|
}
|
||
|
|
||
|
/* 線性對數階 */
|
||
|
int linearLogRecur(int n) {
|
||
|
if (n <= 1)
|
||
|
return 1;
|
||
|
int count = linearLogRecur(n / 2) + linearLogRecur(n / 2);
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
count++;
|
||
|
}
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
/* 階乘階(遞迴實現) */
|
||
|
int factorialRecur(int n) {
|
||
|
if (n == 0)
|
||
|
return 1;
|
||
|
int count = 0;
|
||
|
// 從 1 個分裂出 n 個
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
count += factorialRecur(n - 1);
|
||
|
}
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
/* Driver Code */
|
||
|
int main() {
|
||
|
// 可以修改 n 執行,體會一下各種複雜度的操作數量變化趨勢
|
||
|
int n = 8;
|
||
|
cout << "輸入資料大小 n = " << n << endl;
|
||
|
|
||
|
int count = constant(n);
|
||
|
cout << "常數階的操作數量 = " << count << endl;
|
||
|
|
||
|
count = linear(n);
|
||
|
cout << "線性階的操作數量 = " << count << endl;
|
||
|
vector<int> arr(n);
|
||
|
count = arrayTraversal(arr);
|
||
|
cout << "線性階(走訪陣列)的操作數量 = " << count << endl;
|
||
|
|
||
|
count = quadratic(n);
|
||
|
cout << "平方階的操作數量 = " << count << endl;
|
||
|
vector<int> nums(n);
|
||
|
for (int i = 0; i < n; i++)
|
||
|
nums[i] = n - i; // [n,n-1,...,2,1]
|
||
|
count = bubbleSort(nums);
|
||
|
cout << "平方階(泡沫排序)的操作數量 = " << count << endl;
|
||
|
|
||
|
count = exponential(n);
|
||
|
cout << "指數階(迴圈實現)的操作數量 = " << count << endl;
|
||
|
count = expRecur(n);
|
||
|
cout << "指數階(遞迴實現)的操作數量 = " << count << endl;
|
||
|
|
||
|
count = logarithmic(n);
|
||
|
cout << "對數階(迴圈實現)的操作數量 = " << count << endl;
|
||
|
count = logRecur(n);
|
||
|
cout << "對數階(遞迴實現)的操作數量 = " << count << endl;
|
||
|
|
||
|
count = linearLogRecur(n);
|
||
|
cout << "線性對數階(遞迴實現)的操作數量 = " << count << endl;
|
||
|
|
||
|
count = factorialRecur(n);
|
||
|
cout << "階乘階(遞迴實現)的操作數量 = " << count << endl;
|
||
|
|
||
|
return 0;
|
||
|
}
|