mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-26 11:06:28 +08:00
173 lines
4.2 KiB
Swift
173 lines
4.2 KiB
Swift
|
/**
|
|||
|
* File: time_complexity.swift
|
|||
|
* Created Time: 2022-12-26
|
|||
|
* Author: nuomi1 (nuomi1@qq.com)
|
|||
|
*/
|
|||
|
|
|||
|
/* 常數階 */
|
|||
|
func constant(n: Int) -> Int {
|
|||
|
var count = 0
|
|||
|
let size = 100_000
|
|||
|
for _ in 0 ..< size {
|
|||
|
count += 1
|
|||
|
}
|
|||
|
return count
|
|||
|
}
|
|||
|
|
|||
|
/* 線性階 */
|
|||
|
func linear(n: Int) -> Int {
|
|||
|
var count = 0
|
|||
|
for _ in 0 ..< n {
|
|||
|
count += 1
|
|||
|
}
|
|||
|
return count
|
|||
|
}
|
|||
|
|
|||
|
/* 線性階(走訪陣列) */
|
|||
|
func arrayTraversal(nums: [Int]) -> Int {
|
|||
|
var count = 0
|
|||
|
// 迴圈次數與陣列長度成正比
|
|||
|
for _ in nums {
|
|||
|
count += 1
|
|||
|
}
|
|||
|
return count
|
|||
|
}
|
|||
|
|
|||
|
/* 平方階 */
|
|||
|
func quadratic(n: Int) -> Int {
|
|||
|
var count = 0
|
|||
|
// 迴圈次數與資料大小 n 成平方關係
|
|||
|
for _ in 0 ..< n {
|
|||
|
for _ in 0 ..< n {
|
|||
|
count += 1
|
|||
|
}
|
|||
|
}
|
|||
|
return count
|
|||
|
}
|
|||
|
|
|||
|
/* 平方階(泡沫排序) */
|
|||
|
func bubbleSort(nums: inout [Int]) -> Int {
|
|||
|
var count = 0 // 計數器
|
|||
|
// 外迴圈:未排序區間為 [0, i]
|
|||
|
for i in nums.indices.dropFirst().reversed() {
|
|||
|
// 內迴圈:將未排序區間 [0, i] 中的最大元素交換至該區間的最右端
|
|||
|
for j in 0 ..< i {
|
|||
|
if nums[j] > nums[j + 1] {
|
|||
|
// 交換 nums[j] 與 nums[j + 1]
|
|||
|
let tmp = nums[j]
|
|||
|
nums[j] = nums[j + 1]
|
|||
|
nums[j + 1] = tmp
|
|||
|
count += 3 // 元素交換包含 3 個單元操作
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
return count
|
|||
|
}
|
|||
|
|
|||
|
/* 指數階(迴圈實現) */
|
|||
|
func exponential(n: Int) -> Int {
|
|||
|
var count = 0
|
|||
|
var base = 1
|
|||
|
// 細胞每輪一分為二,形成數列 1, 2, 4, 8, ..., 2^(n-1)
|
|||
|
for _ in 0 ..< n {
|
|||
|
for _ in 0 ..< base {
|
|||
|
count += 1
|
|||
|
}
|
|||
|
base *= 2
|
|||
|
}
|
|||
|
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
|
|||
|
return count
|
|||
|
}
|
|||
|
|
|||
|
/* 指數階(遞迴實現) */
|
|||
|
func expRecur(n: Int) -> Int {
|
|||
|
if n == 1 {
|
|||
|
return 1
|
|||
|
}
|
|||
|
return expRecur(n: n - 1) + expRecur(n: n - 1) + 1
|
|||
|
}
|
|||
|
|
|||
|
/* 對數階(迴圈實現) */
|
|||
|
func logarithmic(n: Int) -> Int {
|
|||
|
var count = 0
|
|||
|
var n = n
|
|||
|
while n > 1 {
|
|||
|
n = n / 2
|
|||
|
count += 1
|
|||
|
}
|
|||
|
return count
|
|||
|
}
|
|||
|
|
|||
|
/* 對數階(遞迴實現) */
|
|||
|
func logRecur(n: Int) -> Int {
|
|||
|
if n <= 1 {
|
|||
|
return 0
|
|||
|
}
|
|||
|
return logRecur(n: n / 2) + 1
|
|||
|
}
|
|||
|
|
|||
|
/* 線性對數階 */
|
|||
|
func linearLogRecur(n: Int) -> Int {
|
|||
|
if n <= 1 {
|
|||
|
return 1
|
|||
|
}
|
|||
|
var count = linearLogRecur(n: n / 2) + linearLogRecur(n: n / 2)
|
|||
|
for _ in stride(from: 0, to: n, by: 1) {
|
|||
|
count += 1
|
|||
|
}
|
|||
|
return count
|
|||
|
}
|
|||
|
|
|||
|
/* 階乘階(遞迴實現) */
|
|||
|
func factorialRecur(n: Int) -> Int {
|
|||
|
if n == 0 {
|
|||
|
return 1
|
|||
|
}
|
|||
|
var count = 0
|
|||
|
// 從 1 個分裂出 n 個
|
|||
|
for _ in 0 ..< n {
|
|||
|
count += factorialRecur(n: n - 1)
|
|||
|
}
|
|||
|
return count
|
|||
|
}
|
|||
|
|
|||
|
@main
|
|||
|
enum TimeComplexity {
|
|||
|
/* Driver Code */
|
|||
|
static func main() {
|
|||
|
// 可以修改 n 執行,體會一下各種複雜度的操作數量變化趨勢
|
|||
|
let n = 8
|
|||
|
print("輸入資料大小 n = \(n)")
|
|||
|
|
|||
|
var count = constant(n: n)
|
|||
|
print("常數階的操作數量 = \(count)")
|
|||
|
|
|||
|
count = linear(n: n)
|
|||
|
print("線性階的操作數量 = \(count)")
|
|||
|
count = arrayTraversal(nums: Array(repeating: 0, count: n))
|
|||
|
print("線性階(走訪陣列)的操作數量 = \(count)")
|
|||
|
|
|||
|
count = quadratic(n: n)
|
|||
|
print("平方階的操作數量 = \(count)")
|
|||
|
var nums = Array(stride(from: n, to: 0, by: -1)) // [n,n-1,...,2,1]
|
|||
|
count = bubbleSort(nums: &nums)
|
|||
|
print("平方階(泡沫排序)的操作數量 = \(count)")
|
|||
|
|
|||
|
count = exponential(n: n)
|
|||
|
print("指數階(迴圈實現)的操作數量 = \(count)")
|
|||
|
count = expRecur(n: n)
|
|||
|
print("指數階(遞迴實現)的操作數量 = \(count)")
|
|||
|
|
|||
|
count = logarithmic(n: n)
|
|||
|
print("對數階(迴圈實現)的操作數量 = \(count)")
|
|||
|
count = logRecur(n: n)
|
|||
|
print("對數階(遞迴實現)的操作數量 = \(count)")
|
|||
|
|
|||
|
count = linearLogRecur(n: n)
|
|||
|
print("線性對數階(遞迴實現)的操作數量 = \(count)")
|
|||
|
|
|||
|
count = factorialRecur(n: n)
|
|||
|
print("階乘階(遞迴實現)的操作數量 = \(count)")
|
|||
|
}
|
|||
|
}
|