mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-27 15:16:29 +08:00
147 lines
4.3 KiB
Python
147 lines
4.3 KiB
Python
|
"""
|
||
|
File: binary_search_tree.py
|
||
|
Created Time: 2022-12-20
|
||
|
Author: a16su (lpluls001@gmail.com)
|
||
|
"""
|
||
|
|
||
|
import sys
|
||
|
from pathlib import Path
|
||
|
|
||
|
sys.path.append(str(Path(__file__).parent.parent))
|
||
|
from modules import TreeNode, print_tree
|
||
|
|
||
|
|
||
|
class BinarySearchTree:
|
||
|
"""二元搜尋樹"""
|
||
|
|
||
|
def __init__(self):
|
||
|
"""建構子"""
|
||
|
# 初始化空樹
|
||
|
self._root = None
|
||
|
|
||
|
def get_root(self) -> TreeNode | None:
|
||
|
"""獲取二元樹根節點"""
|
||
|
return self._root
|
||
|
|
||
|
def search(self, num: int) -> TreeNode | None:
|
||
|
"""查詢節點"""
|
||
|
cur = self._root
|
||
|
# 迴圈查詢,越過葉節點後跳出
|
||
|
while cur is not None:
|
||
|
# 目標節點在 cur 的右子樹中
|
||
|
if cur.val < num:
|
||
|
cur = cur.right
|
||
|
# 目標節點在 cur 的左子樹中
|
||
|
elif cur.val > num:
|
||
|
cur = cur.left
|
||
|
# 找到目標節點,跳出迴圈
|
||
|
else:
|
||
|
break
|
||
|
return cur
|
||
|
|
||
|
def insert(self, num: int):
|
||
|
"""插入節點"""
|
||
|
# 若樹為空,則初始化根節點
|
||
|
if self._root is None:
|
||
|
self._root = TreeNode(num)
|
||
|
return
|
||
|
# 迴圈查詢,越過葉節點後跳出
|
||
|
cur, pre = self._root, None
|
||
|
while cur is not None:
|
||
|
# 找到重複節點,直接返回
|
||
|
if cur.val == num:
|
||
|
return
|
||
|
pre = cur
|
||
|
# 插入位置在 cur 的右子樹中
|
||
|
if cur.val < num:
|
||
|
cur = cur.right
|
||
|
# 插入位置在 cur 的左子樹中
|
||
|
else:
|
||
|
cur = cur.left
|
||
|
# 插入節點
|
||
|
node = TreeNode(num)
|
||
|
if pre.val < num:
|
||
|
pre.right = node
|
||
|
else:
|
||
|
pre.left = node
|
||
|
|
||
|
def remove(self, num: int):
|
||
|
"""刪除節點"""
|
||
|
# 若樹為空,直接提前返回
|
||
|
if self._root is None:
|
||
|
return
|
||
|
# 迴圈查詢,越過葉節點後跳出
|
||
|
cur, pre = self._root, None
|
||
|
while cur is not None:
|
||
|
# 找到待刪除節點,跳出迴圈
|
||
|
if cur.val == num:
|
||
|
break
|
||
|
pre = cur
|
||
|
# 待刪除節點在 cur 的右子樹中
|
||
|
if cur.val < num:
|
||
|
cur = cur.right
|
||
|
# 待刪除節點在 cur 的左子樹中
|
||
|
else:
|
||
|
cur = cur.left
|
||
|
# 若無待刪除節點,則直接返回
|
||
|
if cur is None:
|
||
|
return
|
||
|
|
||
|
# 子節點數量 = 0 or 1
|
||
|
if cur.left is None or cur.right is None:
|
||
|
# 當子節點數量 = 0 / 1 時, child = null / 該子節點
|
||
|
child = cur.left or cur.right
|
||
|
# 刪除節點 cur
|
||
|
if cur != self._root:
|
||
|
if pre.left == cur:
|
||
|
pre.left = child
|
||
|
else:
|
||
|
pre.right = child
|
||
|
else:
|
||
|
# 若刪除節點為根節點,則重新指定根節點
|
||
|
self._root = child
|
||
|
# 子節點數量 = 2
|
||
|
else:
|
||
|
# 獲取中序走訪中 cur 的下一個節點
|
||
|
tmp: TreeNode = cur.right
|
||
|
while tmp.left is not None:
|
||
|
tmp = tmp.left
|
||
|
# 遞迴刪除節點 tmp
|
||
|
self.remove(tmp.val)
|
||
|
# 用 tmp 覆蓋 cur
|
||
|
cur.val = tmp.val
|
||
|
|
||
|
|
||
|
"""Driver Code"""
|
||
|
if __name__ == "__main__":
|
||
|
# 初始化二元搜尋樹
|
||
|
bst = BinarySearchTree()
|
||
|
nums = [8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15]
|
||
|
# 請注意,不同的插入順序會生成不同的二元樹,該序列可以生成一個完美二元樹
|
||
|
for num in nums:
|
||
|
bst.insert(num)
|
||
|
print("\n初始化的二元樹為\n")
|
||
|
print_tree(bst.get_root())
|
||
|
|
||
|
# 查詢節點
|
||
|
node = bst.search(7)
|
||
|
print("\n查詢到的節點物件為: {},節點值 = {}".format(node, node.val))
|
||
|
|
||
|
# 插入節點
|
||
|
bst.insert(16)
|
||
|
print("\n插入節點 16 後,二元樹為\n")
|
||
|
print_tree(bst.get_root())
|
||
|
|
||
|
# 刪除節點
|
||
|
bst.remove(1)
|
||
|
print("\n刪除節點 1 後,二元樹為\n")
|
||
|
print_tree(bst.get_root())
|
||
|
|
||
|
bst.remove(2)
|
||
|
print("\n刪除節點 2 後,二元樹為\n")
|
||
|
print_tree(bst.get_root())
|
||
|
|
||
|
bst.remove(4)
|
||
|
print("\n刪除節點 4 後,二元樹為\n")
|
||
|
print_tree(bst.get_root())
|