hello-algo/codes/javascript/chapter_backtracking/n_queens.js

56 lines
1.9 KiB
JavaScript
Raw Normal View History

/**
* File: n_queens.js
* Created Time: 2023-05-13
* Author: Justin (xiefahit@gmail.com)
*/
/* 回溯算法N 皇后 */
function backtrack(row, n, state, res, cols, diags1, diags2) {
// 当放置完所有行时,记录解
if (row === n) {
res.push(state.map((row) => row.slice()));
return;
}
// 遍历所有列
for (let col = 0; col < n; col++) {
// 计算该格子对应的主对角线和副对角线
const diag1 = row - col + n - 1;
const diag2 = row + col;
// 剪枝:不允许该格子所在 (列 或 主对角线 或 副对角线) 包含皇后
if (!(cols[col] || diags1[diag1] || diags2[diag2])) {
// 尝试:将皇后放置在该格子
state[row][col] = 'Q';
cols[col] = diags1[diag1] = diags2[diag2] = true;
// 放置下一行
backtrack(row + 1, n, state, res, cols, diags1, diags2);
// 回退:将该格子恢复为空位
state[row][col] = '#';
cols[col] = diags1[diag1] = diags2[diag2] = false;
}
}
}
/* 求解 N 皇后 */
function nQueens(n) {
// 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位
const state = Array.from({ length: n }, () => Array(n).fill('#'));
const cols = Array(n).fill(false); // 记录列是否有皇后
const diags1 = Array(2 * n - 1).fill(false); // 记录主对角线是否有皇后
const diags2 = Array(2 * n - 1).fill(false); // 记录副对角线是否有皇后
const res = [];
backtrack(0, n, state, res, cols, diags1, diags2);
return res;
}
// Driver Code
const n = 4;
const res = nQueens(n);
console.log(`输入棋盘长宽为 ${n}`);
console.log(`皇后放置方案共有 ${res.length}`);
res.forEach((state) => {
console.log('--------------------');
state.forEach((row) => console.log(row));
});