mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-26 22:46:28 +08:00
140 lines
4.2 KiB
JavaScript
140 lines
4.2 KiB
JavaScript
|
/**
|
||
|
* File: binary_search_tree.js
|
||
|
* Created Time: 2022-12-04
|
||
|
* Author: IsChristina (christinaxia77@foxmail.com)
|
||
|
*/
|
||
|
|
||
|
const { TreeNode } = require('../modules/TreeNode');
|
||
|
const { printTree } = require('../modules/PrintUtil');
|
||
|
|
||
|
/* 二元搜尋樹 */
|
||
|
class BinarySearchTree {
|
||
|
/* 建構子 */
|
||
|
constructor() {
|
||
|
// 初始化空樹
|
||
|
this.root = null;
|
||
|
}
|
||
|
|
||
|
/* 獲取二元樹根節點 */
|
||
|
getRoot() {
|
||
|
return this.root;
|
||
|
}
|
||
|
|
||
|
/* 查詢節點 */
|
||
|
search(num) {
|
||
|
let cur = this.root;
|
||
|
// 迴圈查詢,越過葉節點後跳出
|
||
|
while (cur !== null) {
|
||
|
// 目標節點在 cur 的右子樹中
|
||
|
if (cur.val < num) cur = cur.right;
|
||
|
// 目標節點在 cur 的左子樹中
|
||
|
else if (cur.val > num) cur = cur.left;
|
||
|
// 找到目標節點,跳出迴圈
|
||
|
else break;
|
||
|
}
|
||
|
// 返回目標節點
|
||
|
return cur;
|
||
|
}
|
||
|
|
||
|
/* 插入節點 */
|
||
|
insert(num) {
|
||
|
// 若樹為空,則初始化根節點
|
||
|
if (this.root === null) {
|
||
|
this.root = new TreeNode(num);
|
||
|
return;
|
||
|
}
|
||
|
let cur = this.root,
|
||
|
pre = null;
|
||
|
// 迴圈查詢,越過葉節點後跳出
|
||
|
while (cur !== null) {
|
||
|
// 找到重複節點,直接返回
|
||
|
if (cur.val === num) return;
|
||
|
pre = cur;
|
||
|
// 插入位置在 cur 的右子樹中
|
||
|
if (cur.val < num) cur = cur.right;
|
||
|
// 插入位置在 cur 的左子樹中
|
||
|
else cur = cur.left;
|
||
|
}
|
||
|
// 插入節點
|
||
|
const node = new TreeNode(num);
|
||
|
if (pre.val < num) pre.right = node;
|
||
|
else pre.left = node;
|
||
|
}
|
||
|
|
||
|
/* 刪除節點 */
|
||
|
remove(num) {
|
||
|
// 若樹為空,直接提前返回
|
||
|
if (this.root === null) return;
|
||
|
let cur = this.root,
|
||
|
pre = null;
|
||
|
// 迴圈查詢,越過葉節點後跳出
|
||
|
while (cur !== null) {
|
||
|
// 找到待刪除節點,跳出迴圈
|
||
|
if (cur.val === num) break;
|
||
|
pre = cur;
|
||
|
// 待刪除節點在 cur 的右子樹中
|
||
|
if (cur.val < num) cur = cur.right;
|
||
|
// 待刪除節點在 cur 的左子樹中
|
||
|
else cur = cur.left;
|
||
|
}
|
||
|
// 若無待刪除節點,則直接返回
|
||
|
if (cur === null) return;
|
||
|
// 子節點數量 = 0 or 1
|
||
|
if (cur.left === null || cur.right === null) {
|
||
|
// 當子節點數量 = 0 / 1 時, child = null / 該子節點
|
||
|
const child = cur.left !== null ? cur.left : cur.right;
|
||
|
// 刪除節點 cur
|
||
|
if (cur !== this.root) {
|
||
|
if (pre.left === cur) pre.left = child;
|
||
|
else pre.right = child;
|
||
|
} else {
|
||
|
// 若刪除節點為根節點,則重新指定根節點
|
||
|
this.root = child;
|
||
|
}
|
||
|
}
|
||
|
// 子節點數量 = 2
|
||
|
else {
|
||
|
// 獲取中序走訪中 cur 的下一個節點
|
||
|
let tmp = cur.right;
|
||
|
while (tmp.left !== null) {
|
||
|
tmp = tmp.left;
|
||
|
}
|
||
|
// 遞迴刪除節點 tmp
|
||
|
this.remove(tmp.val);
|
||
|
// 用 tmp 覆蓋 cur
|
||
|
cur.val = tmp.val;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Driver Code */
|
||
|
/* 初始化二元搜尋樹 */
|
||
|
const bst = new BinarySearchTree();
|
||
|
// 請注意,不同的插入順序會生成不同的二元樹,該序列可以生成一個完美二元樹
|
||
|
const nums = [8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15];
|
||
|
for (const num of nums) {
|
||
|
bst.insert(num);
|
||
|
}
|
||
|
console.log('\n初始化的二元樹為\n');
|
||
|
printTree(bst.getRoot());
|
||
|
|
||
|
/* 查詢節點 */
|
||
|
const node = bst.search(7);
|
||
|
console.log('\n查詢到的節點物件為 ' + node + ',節點值 = ' + node.val);
|
||
|
|
||
|
/* 插入節點 */
|
||
|
bst.insert(16);
|
||
|
console.log('\n插入節點 16 後,二元樹為\n');
|
||
|
printTree(bst.getRoot());
|
||
|
|
||
|
/* 刪除節點 */
|
||
|
bst.remove(1);
|
||
|
console.log('\n刪除節點 1 後,二元樹為\n');
|
||
|
printTree(bst.getRoot());
|
||
|
bst.remove(2);
|
||
|
console.log('\n刪除節點 2 後,二元樹為\n');
|
||
|
printTree(bst.getRoot());
|
||
|
bst.remove(4);
|
||
|
console.log('\n刪除節點 4 後,二元樹為\n');
|
||
|
printTree(bst.getRoot());
|