hello-algo/docs/chapter_searching/binary_search_insertion.md

579 lines
21 KiB
Markdown
Raw Normal View History

2023-10-06 13:31:21 +08:00
---
comments: true
---
# 10.2   二分查找插入点
2023-12-02 06:24:05 +08:00
二分查找不仅可用于搜索目标元素,还可用于解决许多变种问题,比如搜索目标元素的插入位置。
2023-10-06 13:31:21 +08:00
## 10.2.1   无重复元素的情况
!!! question
2023-12-28 17:18:37 +08:00
给定一个长度为 $n$ 的有序数组 `nums` 和一个元素 `target` ,数组不存在重复元素。现将 `target` 插入数组 `nums` 中,并保持其有序性。若数组中已存在元素 `target` ,则插入到其左方。请返回插入后 `target` 在数组中的索引。示例如图 10-4 所示。
2023-10-06 13:31:21 +08:00
2023-11-09 05:13:48 +08:00
![二分查找插入点示例数据](binary_search_insertion.assets/binary_search_insertion_example.png){ class="animation-figure" }
2023-10-06 13:31:21 +08:00
<p align="center"> 图 10-4 &nbsp; 二分查找插入点示例数据 </p>
2023-12-02 06:24:05 +08:00
如果想复用上一节的二分查找代码,则需要回答以下两个问题。
2023-10-06 13:31:21 +08:00
**问题一**:当数组中包含 `target` 时,插入点的索引是否是该元素的索引?
题目要求将 `target` 插入到相等元素的左边,这意味着新插入的 `target` 替换了原来 `target` 的位置。也就是说,**当数组包含 `target` 时,插入点的索引就是该 `target` 的索引**。
**问题二**:当数组中不存在 `target` 时,插入点是哪个元素的索引?
进一步思考二分查找过程:当 `nums[m] < target` 时 $i$ 移动,这意味着指针 $i$ 在向大于等于 `target` 的元素靠近。同理,指针 $j$ 始终在向小于等于 `target` 的元素靠近。
2023-12-02 06:24:05 +08:00
因此二分结束时一定有:$i$ 指向首个大于 `target` 的元素,$j$ 指向首个小于 `target` 的元素。**易得当数组不包含 `target` 时,插入索引为 $i$** 。代码如下所示:
2023-10-06 13:31:21 +08:00
=== "Python"
```python title="binary_search_insertion.py"
2023-10-06 14:10:18 +08:00
def binary_search_insertion_simple(nums: list[int], target: int) -> int:
"""二分查找插入点(无重复元素)"""
i, j = 0, len(nums) - 1 # 初始化双闭区间 [0, n-1]
while i <= j:
m = (i + j) // 2 # 计算中点索引 m
if nums[m] < target:
i = m + 1 # target 在区间 [m+1, j] 中
elif nums[m] > target:
j = m - 1 # target 在区间 [i, m-1] 中
else:
return m # 找到 target ,返回插入点 m
# 未找到 target ,返回插入点 i
return i
2023-10-06 13:31:21 +08:00
```
=== "C++"
```cpp title="binary_search_insertion.cpp"
2023-10-06 14:10:18 +08:00
/* 二分查找插入点(无重复元素) */
int binarySearchInsertionSimple(vector<int> &nums, int target) {
int i = 0, j = nums.size() - 1; // 初始化双闭区间 [0, n-1]
while (i <= j) {
int m = i + (j - i) / 2; // 计算中点索引 m
if (nums[m] < target) {
i = m + 1; // target 在区间 [m+1, j] 中
} else if (nums[m] > target) {
j = m - 1; // target 在区间 [i, m-1] 中
} else {
return m; // 找到 target ,返回插入点 m
}
}
// 未找到 target ,返回插入点 i
return i;
}
2023-10-06 13:31:21 +08:00
```
=== "Java"
```java title="binary_search_insertion.java"
2023-10-06 14:10:18 +08:00
/* 二分查找插入点(无重复元素) */
int binarySearchInsertionSimple(int[] nums, int target) {
int i = 0, j = nums.length - 1; // 初始化双闭区间 [0, n-1]
while (i <= j) {
int m = i + (j - i) / 2; // 计算中点索引 m
if (nums[m] < target) {
i = m + 1; // target 在区间 [m+1, j] 中
} else if (nums[m] > target) {
j = m - 1; // target 在区间 [i, m-1] 中
} else {
return m; // 找到 target ,返回插入点 m
}
}
// 未找到 target ,返回插入点 i
return i;
}
2023-10-06 13:31:21 +08:00
```
=== "C#"
```csharp title="binary_search_insertion.cs"
2023-10-06 14:10:18 +08:00
/* 二分查找插入点(无重复元素) */
2023-10-08 01:43:28 +08:00
int BinarySearchInsertionSimple(int[] nums, int target) {
2023-10-06 14:10:18 +08:00
int i = 0, j = nums.Length - 1; // 初始化双闭区间 [0, n-1]
while (i <= j) {
int m = i + (j - i) / 2; // 计算中点索引 m
if (nums[m] < target) {
i = m + 1; // target 在区间 [m+1, j] 中
} else if (nums[m] > target) {
j = m - 1; // target 在区间 [i, m-1] 中
} else {
return m; // 找到 target ,返回插入点 m
}
}
// 未找到 target ,返回插入点 i
return i;
}
2023-10-06 13:31:21 +08:00
```
=== "Go"
```go title="binary_search_insertion.go"
2023-10-06 14:10:18 +08:00
/* 二分查找插入点(无重复元素) */
func binarySearchInsertionSimple(nums []int, target int) int {
// 初始化双闭区间 [0, n-1]
i, j := 0, len(nums)-1
for i <= j {
// 计算中点索引 m
m := i + (j-i)/2
if nums[m] < target {
// target 在区间 [m+1, j] 中
i = m + 1
} else if nums[m] > target {
// target 在区间 [i, m-1] 中
j = m - 1
} else {
// 找到 target ,返回插入点 m
return m
}
}
// 未找到 target ,返回插入点 i
return i
}
2023-10-06 13:31:21 +08:00
```
=== "Swift"
```swift title="binary_search_insertion.swift"
2023-10-06 14:10:18 +08:00
/* 二分查找插入点(无重复元素) */
func binarySearchInsertionSimple(nums: [Int], target: Int) -> Int {
var i = 0, j = nums.count - 1 // 初始化双闭区间 [0, n-1]
while i <= j {
let m = i + (j - i) / 2 // 计算中点索引 m
if nums[m] < target {
i = m + 1 // target 在区间 [m+1, j] 中
} else if nums[m] > target {
j = m - 1 // target 在区间 [i, m-1] 中
} else {
return m // 找到 target ,返回插入点 m
}
}
// 未找到 target ,返回插入点 i
return i
}
2023-10-06 13:31:21 +08:00
```
=== "JS"
```javascript title="binary_search_insertion.js"
2023-10-06 14:10:18 +08:00
/* 二分查找插入点(无重复元素) */
function binarySearchInsertionSimple(nums, target) {
let i = 0,
j = nums.length - 1; // 初始化双闭区间 [0, n-1]
while (i <= j) {
const m = Math.floor(i + (j - i) / 2); // 计算中点索引 m, 使用 Math.floor() 向下取整
if (nums[m] < target) {
i = m + 1; // target 在区间 [m+1, j] 中
} else if (nums[m] > target) {
j = m - 1; // target 在区间 [i, m-1] 中
} else {
return m; // 找到 target ,返回插入点 m
}
}
// 未找到 target ,返回插入点 i
return i;
}
2023-10-06 13:31:21 +08:00
```
=== "TS"
```typescript title="binary_search_insertion.ts"
2023-10-06 14:10:18 +08:00
/* 二分查找插入点(无重复元素) */
function binarySearchInsertionSimple(
nums: Array<number>,
target: number
): number {
let i = 0,
j = nums.length - 1; // 初始化双闭区间 [0, n-1]
while (i <= j) {
const m = Math.floor(i + (j - i) / 2); // 计算中点索引 m, 使用 Math.floor() 向下取整
if (nums[m] < target) {
i = m + 1; // target 在区间 [m+1, j] 中
} else if (nums[m] > target) {
j = m - 1; // target 在区间 [i, m-1] 中
} else {
return m; // 找到 target ,返回插入点 m
}
}
// 未找到 target ,返回插入点 i
return i;
}
2023-10-06 13:31:21 +08:00
```
=== "Dart"
```dart title="binary_search_insertion.dart"
2023-10-06 14:10:18 +08:00
/* 二分查找插入点(无重复元素) */
int binarySearchInsertionSimple(List<int> nums, int target) {
int i = 0, j = nums.length - 1; // 初始化双闭区间 [0, n-1]
while (i <= j) {
int m = i + (j - i) ~/ 2; // 计算中点索引 m
if (nums[m] < target) {
i = m + 1; // target 在区间 [m+1, j] 中
} else if (nums[m] > target) {
j = m - 1; // target 在区间 [i, m-1] 中
} else {
return m; // 找到 target ,返回插入点 m
}
}
// 未找到 target ,返回插入点 i
return i;
}
2023-10-06 13:31:21 +08:00
```
=== "Rust"
```rust title="binary_search_insertion.rs"
2023-10-06 14:10:18 +08:00
/* 二分查找插入点(存在重复元素) */
pub fn binary_search_insertion(nums: &[i32], target: i32) -> i32 {
let (mut i, mut j) = (0, nums.len() as i32 - 1); // 初始化双闭区间 [0, n-1]
while i <= j {
let m = i + (j - i) / 2; // 计算中点索引 m
if nums[m as usize] < target {
i = m + 1; // target 在区间 [m+1, j] 中
} else if nums[m as usize] > target {
j = m - 1; // target 在区间 [i, m-1] 中
} else {
j = m - 1; // 首个小于 target 的元素在区间 [i, m-1] 中
}
}
// 返回插入点 i
i
}
2023-10-06 13:31:21 +08:00
```
=== "C"
```c title="binary_search_insertion.c"
2023-10-06 14:10:18 +08:00
/* 二分查找插入点(无重复元素) */
int binarySearchInsertionSimple(int *nums, int numSize, int target) {
int i = 0, j = numSize - 1; // 初始化双闭区间 [0, n-1]
while (i <= j) {
int m = i + (j - i) / 2; // 计算中点索引 m
if (nums[m] < target) {
i = m + 1; // target 在区间 [m+1, j] 中
} else if (nums[m] > target) {
j = m - 1; // target 在区间 [i, m-1] 中
} else {
return m; // 找到 target ,返回插入点 m
}
}
// 未找到 target ,返回插入点 i
return i;
}
2023-10-06 13:31:21 +08:00
```
=== "Zig"
```zig title="binary_search_insertion.zig"
[class]{}-[func]{binarySearchInsertionSimple}
```
## 10.2.2 &nbsp; 存在重复元素的情况
!!! question
在上一题的基础上,规定数组可能包含重复元素,其余不变。
假设数组中存在多个 `target` ,则普通二分查找只能返回其中一个 `target` 的索引,**而无法确定该元素的左边和右边还有多少 `target`**。
题目要求将目标元素插入到最左边,**所以我们需要查找数组中最左一个 `target` 的索引**。初步考虑通过图 10-5 所示的步骤实现。
1. 执行二分查找,得到任意一个 `target` 的索引,记为 $k$ 。
2. 从索引 $k$ 开始,向左进行线性遍历,当找到最左边的 `target` 时返回。
2023-11-09 05:13:48 +08:00
![线性查找重复元素的插入点](binary_search_insertion.assets/binary_search_insertion_naive.png){ class="animation-figure" }
2023-10-06 13:31:21 +08:00
<p align="center"> 图 10-5 &nbsp; 线性查找重复元素的插入点 </p>
此方法虽然可用,但其包含线性查找,因此时间复杂度为 $O(n)$ 。当数组中存在很多重复的 `target` 时,该方法效率很低。
2023-12-02 06:24:05 +08:00
现考虑拓展二分查找代码。如图 10-6 所示,整体流程保持不变,每轮先计算中点索引 $m$ ,再判断 `target``nums[m]` 的大小关系,分为以下几种情况。
2023-10-06 13:31:21 +08:00
-`nums[m] < target``nums[m] > target` 时,说明还没有找到 `target` ,因此采用普通二分查找的缩小区间操作,**从而使指针 $i$ 和 $j$ 向 `target` 靠近**。
-`nums[m] == target` 时,说明小于 `target` 的元素在区间 $[i, m - 1]$ 中,因此采用 $j = m - 1$ 来缩小区间,**从而使指针 $j$ 向小于 `target` 的元素靠近**。
循环完成后,$i$ 指向最左边的 `target` $j$ 指向首个小于 `target` 的元素,**因此索引 $i$ 就是插入点**。
=== "<1>"
2023-11-09 05:13:48 +08:00
![二分查找重复元素的插入点的步骤](binary_search_insertion.assets/binary_search_insertion_step1.png){ class="animation-figure" }
2023-10-06 13:31:21 +08:00
=== "<2>"
2023-11-09 05:13:48 +08:00
![binary_search_insertion_step2](binary_search_insertion.assets/binary_search_insertion_step2.png){ class="animation-figure" }
2023-10-06 13:31:21 +08:00
=== "<3>"
2023-11-09 05:13:48 +08:00
![binary_search_insertion_step3](binary_search_insertion.assets/binary_search_insertion_step3.png){ class="animation-figure" }
2023-10-06 13:31:21 +08:00
=== "<4>"
2023-11-09 05:13:48 +08:00
![binary_search_insertion_step4](binary_search_insertion.assets/binary_search_insertion_step4.png){ class="animation-figure" }
2023-10-06 13:31:21 +08:00
=== "<5>"
2023-11-09 05:13:48 +08:00
![binary_search_insertion_step5](binary_search_insertion.assets/binary_search_insertion_step5.png){ class="animation-figure" }
2023-10-06 13:31:21 +08:00
=== "<6>"
2023-11-09 05:13:48 +08:00
![binary_search_insertion_step6](binary_search_insertion.assets/binary_search_insertion_step6.png){ class="animation-figure" }
2023-10-06 13:31:21 +08:00
=== "<7>"
2023-11-09 05:13:48 +08:00
![binary_search_insertion_step7](binary_search_insertion.assets/binary_search_insertion_step7.png){ class="animation-figure" }
2023-10-06 13:31:21 +08:00
=== "<8>"
2023-11-09 05:13:48 +08:00
![binary_search_insertion_step8](binary_search_insertion.assets/binary_search_insertion_step8.png){ class="animation-figure" }
2023-10-06 13:31:21 +08:00
<p align="center"> 图 10-6 &nbsp; 二分查找重复元素的插入点的步骤 </p>
观察以下代码,判断分支 `nums[m] > target``nums[m] == target` 的操作相同,因此两者可以合并。
即便如此,我们仍然可以将判断条件保持展开,因为其逻辑更加清晰、可读性更好。
=== "Python"
```python title="binary_search_insertion.py"
2023-10-06 14:10:18 +08:00
def binary_search_insertion(nums: list[int], target: int) -> int:
"""二分查找插入点(存在重复元素)"""
i, j = 0, len(nums) - 1 # 初始化双闭区间 [0, n-1]
while i <= j:
m = (i + j) // 2 # 计算中点索引 m
if nums[m] < target:
i = m + 1 # target 在区间 [m+1, j] 中
elif nums[m] > target:
j = m - 1 # target 在区间 [i, m-1] 中
else:
j = m - 1 # 首个小于 target 的元素在区间 [i, m-1] 中
# 返回插入点 i
return i
2023-10-06 13:31:21 +08:00
```
=== "C++"
```cpp title="binary_search_insertion.cpp"
2023-10-06 14:10:18 +08:00
/* 二分查找插入点(存在重复元素) */
int binarySearchInsertion(vector<int> &nums, int target) {
int i = 0, j = nums.size() - 1; // 初始化双闭区间 [0, n-1]
while (i <= j) {
int m = i + (j - i) / 2; // 计算中点索引 m
if (nums[m] < target) {
i = m + 1; // target 在区间 [m+1, j] 中
} else if (nums[m] > target) {
j = m - 1; // target 在区间 [i, m-1] 中
} else {
j = m - 1; // 首个小于 target 的元素在区间 [i, m-1] 中
}
}
// 返回插入点 i
return i;
}
2023-10-06 13:31:21 +08:00
```
=== "Java"
```java title="binary_search_insertion.java"
2023-10-06 14:10:18 +08:00
/* 二分查找插入点(存在重复元素) */
int binarySearchInsertion(int[] nums, int target) {
int i = 0, j = nums.length - 1; // 初始化双闭区间 [0, n-1]
while (i <= j) {
int m = i + (j - i) / 2; // 计算中点索引 m
if (nums[m] < target) {
i = m + 1; // target 在区间 [m+1, j] 中
} else if (nums[m] > target) {
j = m - 1; // target 在区间 [i, m-1] 中
} else {
j = m - 1; // 首个小于 target 的元素在区间 [i, m-1] 中
}
}
// 返回插入点 i
return i;
}
2023-10-06 13:31:21 +08:00
```
=== "C#"
```csharp title="binary_search_insertion.cs"
2023-10-06 14:10:18 +08:00
/* 二分查找插入点(存在重复元素) */
2023-10-08 01:43:28 +08:00
int BinarySearchInsertion(int[] nums, int target) {
2023-10-06 14:10:18 +08:00
int i = 0, j = nums.Length - 1; // 初始化双闭区间 [0, n-1]
while (i <= j) {
int m = i + (j - i) / 2; // 计算中点索引 m
if (nums[m] < target) {
i = m + 1; // target 在区间 [m+1, j] 中
} else if (nums[m] > target) {
j = m - 1; // target 在区间 [i, m-1] 中
} else {
j = m - 1; // 首个小于 target 的元素在区间 [i, m-1] 中
}
}
// 返回插入点 i
return i;
}
2023-10-06 13:31:21 +08:00
```
=== "Go"
```go title="binary_search_insertion.go"
2023-10-06 14:10:18 +08:00
/* 二分查找插入点(存在重复元素) */
func binarySearchInsertion(nums []int, target int) int {
// 初始化双闭区间 [0, n-1]
i, j := 0, len(nums)-1
for i <= j {
// 计算中点索引 m
m := i + (j-i)/2
if nums[m] < target {
// target 在区间 [m+1, j] 中
i = m + 1
} else if nums[m] > target {
// target 在区间 [i, m-1] 中
j = m - 1
} else {
// 首个小于 target 的元素在区间 [i, m-1] 中
j = m - 1
}
}
// 返回插入点 i
return i
}
2023-10-06 13:31:21 +08:00
```
=== "Swift"
```swift title="binary_search_insertion.swift"
2023-10-06 14:10:18 +08:00
/* 二分查找插入点(存在重复元素) */
func binarySearchInsertion(nums: [Int], target: Int) -> Int {
var i = 0, j = nums.count - 1 // 初始化双闭区间 [0, n-1]
while i <= j {
let m = i + (j - i) / 2 // 计算中点索引 m
if nums[m] < target {
i = m + 1 // target 在区间 [m+1, j] 中
} else if nums[m] > target {
j = m - 1 // target 在区间 [i, m-1] 中
} else {
j = m - 1 // 首个小于 target 的元素在区间 [i, m-1] 中
}
}
// 返回插入点 i
return i
}
2023-10-06 13:31:21 +08:00
```
=== "JS"
```javascript title="binary_search_insertion.js"
2023-10-06 14:10:18 +08:00
/* 二分查找插入点(存在重复元素) */
function binarySearchInsertion(nums, target) {
let i = 0,
j = nums.length - 1; // 初始化双闭区间 [0, n-1]
while (i <= j) {
const m = Math.floor(i + (j - i) / 2); // 计算中点索引 m, 使用 Math.floor() 向下取整
if (nums[m] < target) {
i = m + 1; // target 在区间 [m+1, j] 中
} else if (nums[m] > target) {
j = m - 1; // target 在区间 [i, m-1] 中
} else {
j = m - 1; // 首个小于 target 的元素在区间 [i, m-1] 中
}
}
// 返回插入点 i
return i;
}
2023-10-06 13:31:21 +08:00
```
=== "TS"
```typescript title="binary_search_insertion.ts"
2023-10-06 14:10:18 +08:00
/* 二分查找插入点(存在重复元素) */
function binarySearchInsertion(nums: Array<number>, target: number): number {
let i = 0,
j = nums.length - 1; // 初始化双闭区间 [0, n-1]
while (i <= j) {
const m = Math.floor(i + (j - i) / 2); // 计算中点索引 m, 使用 Math.floor() 向下取整
if (nums[m] < target) {
i = m + 1; // target 在区间 [m+1, j] 中
} else if (nums[m] > target) {
j = m - 1; // target 在区间 [i, m-1] 中
} else {
j = m - 1; // 首个小于 target 的元素在区间 [i, m-1] 中
}
}
// 返回插入点 i
return i;
}
2023-10-06 13:31:21 +08:00
```
=== "Dart"
```dart title="binary_search_insertion.dart"
2023-10-06 14:10:18 +08:00
/* 二分查找插入点(存在重复元素) */
int binarySearchInsertion(List<int> nums, int target) {
int i = 0, j = nums.length - 1; // 初始化双闭区间 [0, n-1]
while (i <= j) {
int m = i + (j - i) ~/ 2; // 计算中点索引 m
if (nums[m] < target) {
i = m + 1; // target 在区间 [m+1, j] 中
} else if (nums[m] > target) {
j = m - 1; // target 在区间 [i, m-1] 中
} else {
j = m - 1; // 首个小于 target 的元素在区间 [i, m-1] 中
}
}
// 返回插入点 i
return i;
}
2023-10-06 13:31:21 +08:00
```
=== "Rust"
```rust title="binary_search_insertion.rs"
2023-10-06 14:10:18 +08:00
/* 二分查找插入点(存在重复元素) */
pub fn binary_search_insertion(nums: &[i32], target: i32) -> i32 {
let (mut i, mut j) = (0, nums.len() as i32 - 1); // 初始化双闭区间 [0, n-1]
while i <= j {
let m = i + (j - i) / 2; // 计算中点索引 m
if nums[m as usize] < target {
i = m + 1; // target 在区间 [m+1, j] 中
} else if nums[m as usize] > target {
j = m - 1; // target 在区间 [i, m-1] 中
} else {
j = m - 1; // 首个小于 target 的元素在区间 [i, m-1] 中
}
}
// 返回插入点 i
i
}
2023-10-06 13:31:21 +08:00
```
=== "C"
```c title="binary_search_insertion.c"
2023-10-06 14:10:18 +08:00
/* 二分查找插入点(存在重复元素) */
int binarySearchInsertion(int *nums, int numSize, int target) {
int i = 0, j = numSize - 1; // 初始化双闭区间 [0, n-1]
while (i <= j) {
int m = i + (j - i) / 2; // 计算中点索引 m
if (nums[m] < target) {
i = m + 1; // target 在区间 [m+1, j] 中
} else if (nums[m] > target) {
j = m - 1; // target 在区间 [i, m-1] 中
} else {
j = m - 1; // 首个小于 target 的元素在区间 [i, m-1] 中
}
}
// 返回插入点 i
return i;
}
2023-10-06 13:31:21 +08:00
```
=== "Zig"
```zig title="binary_search_insertion.zig"
[class]{}-[func]{binarySearchInsertion}
```
!!! tip
本节的代码都是“双闭区间”写法。有兴趣的读者可以自行实现“左闭右开”写法。
总的来看,二分查找无非就是给指针 $i$ 和 $j$ 分别设定搜索目标,目标可能是一个具体的元素(例如 `target` ),也可能是一个元素范围(例如小于 `target` 的元素)。
在不断的循环二分中,指针 $i$ 和 $j$ 都逐渐逼近预先设定的目标。最终,它们或是成功找到答案,或是越过边界后停止。