hello-algo/codes/java/chapter_dynamic_programming/unbounded_knapsack.java

64 lines
2.1 KiB
Java
Raw Normal View History

/**
* File: unbounded_knapsack.java
* Created Time: 2023-07-11
* Author: krahets (krahets@163.com)
*/
package chapter_dynamic_programming;
public class unbounded_knapsack {
/* 完全背包:动态规划 */
static int unboundedKnapsackDP(int[] wgt, int[] val, int cap) {
int n = wgt.length;
// 初始化 dp 表
int[][] dp = new int[n + 1][cap + 1];
// 状态转移
for (int i = 1; i <= n; i++) {
for (int c = 1; c <= cap; c++) {
if (wgt[i - 1] > c) {
// 若超过背包容量,则不选物品 i
dp[i][c] = dp[i - 1][c];
} else {
// 不选和选物品 i 这两种方案的较大值
dp[i][c] = Math.max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1]);
}
}
}
return dp[n][cap];
}
2023-08-27 00:50:18 +08:00
/* 完全背包:空间优化后的动态规划 */
static int unboundedKnapsackDPComp(int[] wgt, int[] val, int cap) {
int n = wgt.length;
// 初始化 dp 表
int[] dp = new int[cap + 1];
// 状态转移
for (int i = 1; i <= n; i++) {
for (int c = 1; c <= cap; c++) {
if (wgt[i - 1] > c) {
// 若超过背包容量,则不选物品 i
dp[c] = dp[c];
} else {
// 不选和选物品 i 这两种方案的较大值
dp[c] = Math.max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);
}
}
}
return dp[cap];
}
public static void main(String[] args) {
int[] wgt = { 1, 2, 3 };
int[] val = { 5, 11, 15 };
int cap = 4;
// 动态规划
int res = unboundedKnapsackDP(wgt, val, cap);
System.out.println("不超过背包容量的最大物品价值为 " + res);
2023-08-27 00:50:18 +08:00
// 空间优化后的动态规划
res = unboundedKnapsackDPComp(wgt, val, cap);
System.out.println("不超过背包容量的最大物品价值为 " + res);
}
}