hello-algo/zh-Hant/docs/chapter_backtracking/n_queens_problem.md

733 lines
38 KiB
Markdown
Raw Normal View History

2024-04-06 03:02:20 +08:00
---
comments: true
---
# 13.4   n 皇后問題
!!! question
根據國際象棋的規則,皇后可以攻擊與同處一行、一列或一條斜線上的棋子。給定 $n$ 個皇后和一個 $n \times n$ 大小的棋盤,尋找使得所有皇后之間無法相互攻擊的擺放方案。
如圖 13-15 所示,當 $n = 4$ 時,共可以找到兩個解。從回溯演算法的角度看,$n \times n$ 大小的棋盤共有 $n^2$ 個格子,給出了所有的選擇 `choices` 。在逐個放置皇后的過程中,棋盤狀態在不斷地變化,每個時刻的棋盤就是狀態 `state`
![4 皇后問題的解](n_queens_problem.assets/solution_4_queens.png){ class="animation-figure" }
<p align="center"> 圖 13-15 &nbsp; 4 皇后問題的解 </p>
圖 13-16 展示了本題的三個約束條件:**多個皇后不能在同一行、同一列、同一條對角線上**。值得注意的是,對角線分為主對角線 `\` 和次對角線 `/` 兩種。
![n 皇后問題的約束條件](n_queens_problem.assets/n_queens_constraints.png){ class="animation-figure" }
<p align="center"> 圖 13-16 &nbsp; n 皇后問題的約束條件 </p>
### 1. &nbsp; 逐行放置策略
皇后的數量和棋盤的行數都為 $n$ ,因此我們容易得到一個推論:**棋盤每行都允許且只允許放置一個皇后**。
也就是說,我們可以採取逐行放置策略:從第一行開始,在每行放置一個皇后,直至最後一行結束。
圖 13-17 所示為 $4$ 皇后問題的逐行放置過程。受畫幅限制,圖 13-17 僅展開了第一行的其中一個搜尋分支,並且將不滿足列約束和對角線約束的方案都進行了剪枝。
![逐行放置策略](n_queens_problem.assets/n_queens_placing.png){ class="animation-figure" }
<p align="center"> 圖 13-17 &nbsp; 逐行放置策略 </p>
從本質上看,**逐行放置策略起到了剪枝的作用**,它避免了同一行出現多個皇后的所有搜尋分支。
### 2. &nbsp; 列與對角線剪枝
為了滿足列約束,我們可以利用一個長度為 $n$ 的布林型陣列 `cols` 記錄每一列是否有皇后。在每次決定放置前,我們透過 `cols` 將已有皇后的列進行剪枝,並在回溯中動態更新 `cols` 的狀態。
那麼,如何處理對角線約束呢?設棋盤中某個格子的行列索引為 $(row, col)$ ,選定矩陣中的某條主對角線,我們發現該對角線上所有格子的行索引減列索引都相等,**即對角線上所有格子的 $row - col$ 為恆定值**。
也就是說,如果兩個格子滿足 $row_1 - col_1 = row_2 - col_2$ ,則它們一定處在同一條主對角線上。利用該規律,我們可以藉助圖 13-18 所示的陣列 `diags1` 記錄每條主對角線上是否有皇后。
同理,**次對角線上的所有格子的 $row + col$ 是恆定值**。我們同樣也可以藉助陣列 `diags2` 來處理次對角線約束。
![處理列約束和對角線約束](n_queens_problem.assets/n_queens_cols_diagonals.png){ class="animation-figure" }
<p align="center"> 圖 13-18 &nbsp; 處理列約束和對角線約束 </p>
### 3. &nbsp; 程式碼實現
請注意,$n$ 維方陣中 $row - col$ 的範圍是 $[-n + 1, n - 1]$ $row + col$ 的範圍是 $[0, 2n - 2]$ ,所以主對角線和次對角線的數量都為 $2n - 1$ ,即陣列 `diags1``diags2` 的長度都為 $2n - 1$ 。
=== "Python"
```python title="n_queens.py"
def backtrack(
row: int,
n: int,
state: list[list[str]],
res: list[list[list[str]]],
cols: list[bool],
diags1: list[bool],
diags2: list[bool],
):
"""回溯演算法n 皇后"""
# 當放置完所有行時,記錄解
if row == n:
res.append([list(row) for row in state])
return
# 走訪所有列
for col in range(n):
# 計算該格子對應的主對角線和次對角線
diag1 = row - col + n - 1
diag2 = row + col
# 剪枝:不允許該格子所在列、主對角線、次對角線上存在皇后
if not cols[col] and not diags1[diag1] and not diags2[diag2]:
# 嘗試:將皇后放置在該格子
state[row][col] = "Q"
cols[col] = diags1[diag1] = diags2[diag2] = True
# 放置下一行
backtrack(row + 1, n, state, res, cols, diags1, diags2)
# 回退:將該格子恢復為空位
state[row][col] = "#"
cols[col] = diags1[diag1] = diags2[diag2] = False
def n_queens(n: int) -> list[list[list[str]]]:
"""求解 n 皇后"""
# 初始化 n*n 大小的棋盤,其中 'Q' 代表皇后,'#' 代表空位
state = [["#" for _ in range(n)] for _ in range(n)]
cols = [False] * n # 記錄列是否有皇后
diags1 = [False] * (2 * n - 1) # 記錄主對角線上是否有皇后
diags2 = [False] * (2 * n - 1) # 記錄次對角線上是否有皇后
res = []
backtrack(0, n, state, res, cols, diags1, diags2)
return res
```
=== "C++"
```cpp title="n_queens.cpp"
/* 回溯演算法n 皇后 */
void backtrack(int row, int n, vector<vector<string>> &state, vector<vector<vector<string>>> &res, vector<bool> &cols,
vector<bool> &diags1, vector<bool> &diags2) {
// 當放置完所有行時,記錄解
if (row == n) {
res.push_back(state);
return;
}
// 走訪所有列
for (int col = 0; col < n; col++) {
// 計算該格子對應的主對角線和次對角線
int diag1 = row - col + n - 1;
int diag2 = row + col;
// 剪枝:不允許該格子所在列、主對角線、次對角線上存在皇后
if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {
// 嘗試:將皇后放置在該格子
state[row][col] = "Q";
cols[col] = diags1[diag1] = diags2[diag2] = true;
// 放置下一行
backtrack(row + 1, n, state, res, cols, diags1, diags2);
// 回退:將該格子恢復為空位
state[row][col] = "#";
cols[col] = diags1[diag1] = diags2[diag2] = false;
}
}
}
/* 求解 n 皇后 */
vector<vector<vector<string>>> nQueens(int n) {
// 初始化 n*n 大小的棋盤,其中 'Q' 代表皇后,'#' 代表空位
vector<vector<string>> state(n, vector<string>(n, "#"));
vector<bool> cols(n, false); // 記錄列是否有皇后
vector<bool> diags1(2 * n - 1, false); // 記錄主對角線上是否有皇后
vector<bool> diags2(2 * n - 1, false); // 記錄次對角線上是否有皇后
vector<vector<vector<string>>> res;
backtrack(0, n, state, res, cols, diags1, diags2);
return res;
}
```
=== "Java"
```java title="n_queens.java"
/* 回溯演算法n 皇后 */
void backtrack(int row, int n, List<List<String>> state, List<List<List<String>>> res,
boolean[] cols, boolean[] diags1, boolean[] diags2) {
// 當放置完所有行時,記錄解
if (row == n) {
List<List<String>> copyState = new ArrayList<>();
for (List<String> sRow : state) {
copyState.add(new ArrayList<>(sRow));
}
res.add(copyState);
return;
}
// 走訪所有列
for (int col = 0; col < n; col++) {
// 計算該格子對應的主對角線和次對角線
int diag1 = row - col + n - 1;
int diag2 = row + col;
// 剪枝:不允許該格子所在列、主對角線、次對角線上存在皇后
if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {
// 嘗試:將皇后放置在該格子
state.get(row).set(col, "Q");
cols[col] = diags1[diag1] = diags2[diag2] = true;
// 放置下一行
backtrack(row + 1, n, state, res, cols, diags1, diags2);
// 回退:將該格子恢復為空位
state.get(row).set(col, "#");
cols[col] = diags1[diag1] = diags2[diag2] = false;
}
}
}
/* 求解 n 皇后 */
List<List<List<String>>> nQueens(int n) {
// 初始化 n*n 大小的棋盤,其中 'Q' 代表皇后,'#' 代表空位
List<List<String>> state = new ArrayList<>();
for (int i = 0; i < n; i++) {
List<String> row = new ArrayList<>();
for (int j = 0; j < n; j++) {
row.add("#");
}
state.add(row);
}
boolean[] cols = new boolean[n]; // 記錄列是否有皇后
boolean[] diags1 = new boolean[2 * n - 1]; // 記錄主對角線上是否有皇后
boolean[] diags2 = new boolean[2 * n - 1]; // 記錄次對角線上是否有皇后
List<List<List<String>>> res = new ArrayList<>();
backtrack(0, n, state, res, cols, diags1, diags2);
return res;
}
```
=== "C#"
```csharp title="n_queens.cs"
/* 回溯演算法n 皇后 */
void Backtrack(int row, int n, List<List<string>> state, List<List<List<string>>> res,
bool[] cols, bool[] diags1, bool[] diags2) {
// 當放置完所有行時,記錄解
if (row == n) {
List<List<string>> copyState = [];
foreach (List<string> sRow in state) {
copyState.Add(new List<string>(sRow));
}
res.Add(copyState);
return;
}
// 走訪所有列
for (int col = 0; col < n; col++) {
// 計算該格子對應的主對角線和次對角線
int diag1 = row - col + n - 1;
int diag2 = row + col;
// 剪枝:不允許該格子所在列、主對角線、次對角線上存在皇后
if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {
// 嘗試:將皇后放置在該格子
state[row][col] = "Q";
cols[col] = diags1[diag1] = diags2[diag2] = true;
// 放置下一行
Backtrack(row + 1, n, state, res, cols, diags1, diags2);
// 回退:將該格子恢復為空位
state[row][col] = "#";
cols[col] = diags1[diag1] = diags2[diag2] = false;
}
}
}
/* 求解 n 皇后 */
List<List<List<string>>> NQueens(int n) {
// 初始化 n*n 大小的棋盤,其中 'Q' 代表皇后,'#' 代表空位
List<List<string>> state = [];
for (int i = 0; i < n; i++) {
List<string> row = [];
for (int j = 0; j < n; j++) {
row.Add("#");
}
state.Add(row);
}
bool[] cols = new bool[n]; // 記錄列是否有皇后
bool[] diags1 = new bool[2 * n - 1]; // 記錄主對角線上是否有皇后
bool[] diags2 = new bool[2 * n - 1]; // 記錄次對角線上是否有皇后
List<List<List<string>>> res = [];
Backtrack(0, n, state, res, cols, diags1, diags2);
return res;
}
```
=== "Go"
```go title="n_queens.go"
/* 回溯演算法n 皇后 */
func backtrack(row, n int, state *[][]string, res *[][][]string, cols, diags1, diags2 *[]bool) {
// 當放置完所有行時,記錄解
if row == n {
newState := make([][]string, len(*state))
for i, _ := range newState {
newState[i] = make([]string, len((*state)[0]))
copy(newState[i], (*state)[i])
}
*res = append(*res, newState)
}
// 走訪所有列
for col := 0; col < n; col++ {
// 計算該格子對應的主對角線和次對角線
diag1 := row - col + n - 1
diag2 := row + col
// 剪枝:不允許該格子所在列、主對角線、次對角線上存在皇后
if !(*cols)[col] && !(*diags1)[diag1] && !(*diags2)[diag2] {
// 嘗試:將皇后放置在該格子
(*state)[row][col] = "Q"
(*cols)[col], (*diags1)[diag1], (*diags2)[diag2] = true, true, true
// 放置下一行
backtrack(row+1, n, state, res, cols, diags1, diags2)
// 回退:將該格子恢復為空位
(*state)[row][col] = "#"
(*cols)[col], (*diags1)[diag1], (*diags2)[diag2] = false, false, false
}
}
}
/* 求解 n 皇后 */
func nQueens(n int) [][][]string {
// 初始化 n*n 大小的棋盤,其中 'Q' 代表皇后,'#' 代表空位
state := make([][]string, n)
for i := 0; i < n; i++ {
row := make([]string, n)
for i := 0; i < n; i++ {
row[i] = "#"
}
state[i] = row
}
// 記錄列是否有皇后
cols := make([]bool, n)
diags1 := make([]bool, 2*n-1)
diags2 := make([]bool, 2*n-1)
res := make([][][]string, 0)
backtrack(0, n, &state, &res, &cols, &diags1, &diags2)
return res
}
```
=== "Swift"
```swift title="n_queens.swift"
/* 回溯演算法n 皇后 */
func backtrack(row: Int, n: Int, state: inout [[String]], res: inout [[[String]]], cols: inout [Bool], diags1: inout [Bool], diags2: inout [Bool]) {
// 當放置完所有行時,記錄解
if row == n {
res.append(state)
return
}
// 走訪所有列
for col in 0 ..< n {
// 計算該格子對應的主對角線和次對角線
let diag1 = row - col + n - 1
let diag2 = row + col
// 剪枝:不允許該格子所在列、主對角線、次對角線上存在皇后
if !cols[col] && !diags1[diag1] && !diags2[diag2] {
// 嘗試:將皇后放置在該格子
state[row][col] = "Q"
cols[col] = true
diags1[diag1] = true
diags2[diag2] = true
// 放置下一行
backtrack(row: row + 1, n: n, state: &state, res: &res, cols: &cols, diags1: &diags1, diags2: &diags2)
// 回退:將該格子恢復為空位
state[row][col] = "#"
cols[col] = false
diags1[diag1] = false
diags2[diag2] = false
}
}
}
/* 求解 n 皇后 */
func nQueens(n: Int) -> [[[String]]] {
// 初始化 n*n 大小的棋盤,其中 'Q' 代表皇后,'#' 代表空位
var state = Array(repeating: Array(repeating: "#", count: n), count: n)
var cols = Array(repeating: false, count: n) // 記錄列是否有皇后
var diags1 = Array(repeating: false, count: 2 * n - 1) // 記錄主對角線上是否有皇后
var diags2 = Array(repeating: false, count: 2 * n - 1) // 記錄次對角線上是否有皇后
var res: [[[String]]] = []
backtrack(row: 0, n: n, state: &state, res: &res, cols: &cols, diags1: &diags1, diags2: &diags2)
return res
}
```
=== "JS"
```javascript title="n_queens.js"
/* 回溯演算法n 皇后 */
function backtrack(row, n, state, res, cols, diags1, diags2) {
// 當放置完所有行時,記錄解
if (row === n) {
res.push(state.map((row) => row.slice()));
return;
}
// 走訪所有列
for (let col = 0; col < n; col++) {
// 計算該格子對應的主對角線和次對角線
const diag1 = row - col + n - 1;
const diag2 = row + col;
// 剪枝:不允許該格子所在列、主對角線、次對角線上存在皇后
if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {
// 嘗試:將皇后放置在該格子
state[row][col] = 'Q';
cols[col] = diags1[diag1] = diags2[diag2] = true;
// 放置下一行
backtrack(row + 1, n, state, res, cols, diags1, diags2);
// 回退:將該格子恢復為空位
state[row][col] = '#';
cols[col] = diags1[diag1] = diags2[diag2] = false;
}
}
}
/* 求解 n 皇后 */
function nQueens(n) {
// 初始化 n*n 大小的棋盤,其中 'Q' 代表皇后,'#' 代表空位
const state = Array.from({ length: n }, () => Array(n).fill('#'));
const cols = Array(n).fill(false); // 記錄列是否有皇后
const diags1 = Array(2 * n - 1).fill(false); // 記錄主對角線上是否有皇后
const diags2 = Array(2 * n - 1).fill(false); // 記錄次對角線上是否有皇后
const res = [];
backtrack(0, n, state, res, cols, diags1, diags2);
return res;
}
```
=== "TS"
```typescript title="n_queens.ts"
/* 回溯演算法n 皇后 */
function backtrack(
row: number,
n: number,
state: string[][],
res: string[][][],
cols: boolean[],
diags1: boolean[],
diags2: boolean[]
): void {
// 當放置完所有行時,記錄解
if (row === n) {
res.push(state.map((row) => row.slice()));
return;
}
// 走訪所有列
for (let col = 0; col < n; col++) {
// 計算該格子對應的主對角線和次對角線
const diag1 = row - col + n - 1;
const diag2 = row + col;
// 剪枝:不允許該格子所在列、主對角線、次對角線上存在皇后
if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {
// 嘗試:將皇后放置在該格子
state[row][col] = 'Q';
cols[col] = diags1[diag1] = diags2[diag2] = true;
// 放置下一行
backtrack(row + 1, n, state, res, cols, diags1, diags2);
// 回退:將該格子恢復為空位
state[row][col] = '#';
cols[col] = diags1[diag1] = diags2[diag2] = false;
}
}
}
/* 求解 n 皇后 */
function nQueens(n: number): string[][][] {
// 初始化 n*n 大小的棋盤,其中 'Q' 代表皇后,'#' 代表空位
const state = Array.from({ length: n }, () => Array(n).fill('#'));
const cols = Array(n).fill(false); // 記錄列是否有皇后
const diags1 = Array(2 * n - 1).fill(false); // 記錄主對角線上是否有皇后
const diags2 = Array(2 * n - 1).fill(false); // 記錄次對角線上是否有皇后
const res: string[][][] = [];
backtrack(0, n, state, res, cols, diags1, diags2);
return res;
}
```
=== "Dart"
```dart title="n_queens.dart"
/* 回溯演算法n 皇后 */
void backtrack(
int row,
int n,
List<List<String>> state,
List<List<List<String>>> res,
List<bool> cols,
List<bool> diags1,
List<bool> diags2,
) {
// 當放置完所有行時,記錄解
if (row == n) {
List<List<String>> copyState = [];
for (List<String> sRow in state) {
copyState.add(List.from(sRow));
}
res.add(copyState);
return;
}
// 走訪所有列
for (int col = 0; col < n; col++) {
// 計算該格子對應的主對角線和次對角線
int diag1 = row - col + n - 1;
int diag2 = row + col;
// 剪枝:不允許該格子所在列、主對角線、次對角線上存在皇后
if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {
// 嘗試:將皇后放置在該格子
state[row][col] = "Q";
cols[col] = true;
diags1[diag1] = true;
diags2[diag2] = true;
// 放置下一行
backtrack(row + 1, n, state, res, cols, diags1, diags2);
// 回退:將該格子恢復為空位
state[row][col] = "#";
cols[col] = false;
diags1[diag1] = false;
diags2[diag2] = false;
}
}
}
/* 求解 n 皇后 */
List<List<List<String>>> nQueens(int n) {
// 初始化 n*n 大小的棋盤,其中 'Q' 代表皇后,'#' 代表空位
List<List<String>> state = List.generate(n, (index) => List.filled(n, "#"));
List<bool> cols = List.filled(n, false); // 記錄列是否有皇后
List<bool> diags1 = List.filled(2 * n - 1, false); // 記錄主對角線上是否有皇后
List<bool> diags2 = List.filled(2 * n - 1, false); // 記錄次對角線上是否有皇后
List<List<List<String>>> res = [];
backtrack(0, n, state, res, cols, diags1, diags2);
return res;
}
```
=== "Rust"
```rust title="n_queens.rs"
/* 回溯演算法n 皇后 */
fn backtrack(
row: usize,
n: usize,
state: &mut Vec<Vec<String>>,
res: &mut Vec<Vec<Vec<String>>>,
cols: &mut [bool],
diags1: &mut [bool],
diags2: &mut [bool],
) {
// 當放置完所有行時,記錄解
if row == n {
let mut copy_state: Vec<Vec<String>> = Vec::new();
for s_row in state.clone() {
copy_state.push(s_row);
}
res.push(copy_state);
return;
}
// 走訪所有列
for col in 0..n {
// 計算該格子對應的主對角線和次對角線
let diag1 = row + n - 1 - col;
let diag2 = row + col;
// 剪枝:不允許該格子所在列、主對角線、次對角線上存在皇后
if !cols[col] && !diags1[diag1] && !diags2[diag2] {
// 嘗試:將皇后放置在該格子
state.get_mut(row).unwrap()[col] = "Q".into();
(cols[col], diags1[diag1], diags2[diag2]) = (true, true, true);
// 放置下一行
backtrack(row + 1, n, state, res, cols, diags1, diags2);
// 回退:將該格子恢復為空位
state.get_mut(row).unwrap()[col] = "#".into();
(cols[col], diags1[diag1], diags2[diag2]) = (false, false, false);
}
}
}
/* 求解 n 皇后 */
fn n_queens(n: usize) -> Vec<Vec<Vec<String>>> {
// 初始化 n*n 大小的棋盤,其中 'Q' 代表皇后,'#' 代表空位
let mut state: Vec<Vec<String>> = Vec::new();
for _ in 0..n {
let mut row: Vec<String> = Vec::new();
for _ in 0..n {
row.push("#".into());
}
state.push(row);
}
let mut cols = vec![false; n]; // 記錄列是否有皇后
let mut diags1 = vec![false; 2 * n - 1]; // 記錄主對角線上是否有皇后
let mut diags2 = vec![false; 2 * n - 1]; // 記錄次對角線上是否有皇后
let mut res: Vec<Vec<Vec<String>>> = Vec::new();
backtrack(
0,
n,
&mut state,
&mut res,
&mut cols,
&mut diags1,
&mut diags2,
);
res
}
```
=== "C"
```c title="n_queens.c"
/* 回溯演算法n 皇后 */
void backtrack(int row, int n, char state[MAX_SIZE][MAX_SIZE], char ***res, int *resSize, bool cols[MAX_SIZE],
bool diags1[2 * MAX_SIZE - 1], bool diags2[2 * MAX_SIZE - 1]) {
// 當放置完所有行時,記錄解
if (row == n) {
res[*resSize] = (char **)malloc(sizeof(char *) * n);
for (int i = 0; i < n; ++i) {
res[*resSize][i] = (char *)malloc(sizeof(char) * (n + 1));
strcpy(res[*resSize][i], state[i]);
}
(*resSize)++;
return;
}
// 走訪所有列
for (int col = 0; col < n; col++) {
// 計算該格子對應的主對角線和次對角線
int diag1 = row - col + n - 1;
int diag2 = row + col;
// 剪枝:不允許該格子所在列、主對角線、次對角線上存在皇后
if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {
// 嘗試:將皇后放置在該格子
state[row][col] = 'Q';
cols[col] = diags1[diag1] = diags2[diag2] = true;
// 放置下一行
backtrack(row + 1, n, state, res, resSize, cols, diags1, diags2);
// 回退:將該格子恢復為空位
state[row][col] = '#';
cols[col] = diags1[diag1] = diags2[diag2] = false;
}
}
}
/* 求解 n 皇后 */
char ***nQueens(int n, int *returnSize) {
char state[MAX_SIZE][MAX_SIZE];
// 初始化 n*n 大小的棋盤,其中 'Q' 代表皇后,'#' 代表空位
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
state[i][j] = '#';
}
state[i][n] = '\0';
}
bool cols[MAX_SIZE] = {false}; // 記錄列是否有皇后
bool diags1[2 * MAX_SIZE - 1] = {false}; // 記錄主對角線上是否有皇后
bool diags2[2 * MAX_SIZE - 1] = {false}; // 記錄次對角線上是否有皇后
char ***res = (char ***)malloc(sizeof(char **) * MAX_SIZE);
*returnSize = 0;
backtrack(0, n, state, res, returnSize, cols, diags1, diags2);
return res;
}
```
=== "Kotlin"
```kotlin title="n_queens.kt"
/* 回溯演算法n 皇后 */
fun backtrack(
row: Int,
n: Int,
2024-04-11 01:11:20 +08:00
state: MutableList<MutableList<String>>,
res: MutableList<MutableList<MutableList<String>>?>,
2024-04-06 03:02:20 +08:00
cols: BooleanArray,
diags1: BooleanArray,
diags2: BooleanArray
) {
// 當放置完所有行時,記錄解
if (row == n) {
2024-04-11 01:11:20 +08:00
val copyState = mutableListOf<MutableList<String>>()
2024-04-06 03:02:20 +08:00
for (sRow in state) {
2024-04-11 01:11:20 +08:00
copyState.add(sRow.toMutableList())
2024-04-06 03:02:20 +08:00
}
res.add(copyState)
return
}
// 走訪所有列
for (col in 0..<n) {
// 計算該格子對應的主對角線和次對角線
val diag1 = row - col + n - 1
val diag2 = row + col
// 剪枝:不允許該格子所在列、主對角線、次對角線上存在皇后
if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {
// 嘗試:將皇后放置在該格子
state[row][col] = "Q"
diags2[diag2] = true
diags1[diag1] = diags2[diag2]
cols[col] = diags1[diag1]
// 放置下一行
backtrack(row + 1, n, state, res, cols, diags1, diags2)
// 回退:將該格子恢復為空位
state[row][col] = "#"
diags2[diag2] = false
diags1[diag1] = diags2[diag2]
cols[col] = diags1[diag1]
}
}
}
/* 求解 n 皇后 */
2024-04-11 01:11:20 +08:00
fun nQueens(n: Int): MutableList<MutableList<MutableList<String>>?> {
2024-04-06 03:02:20 +08:00
// 初始化 n*n 大小的棋盤,其中 'Q' 代表皇后,'#' 代表空位
2024-04-11 01:11:20 +08:00
val state = mutableListOf<MutableList<String>>()
2024-04-06 03:02:20 +08:00
for (i in 0..<n) {
2024-04-11 01:11:20 +08:00
val row = mutableListOf<String>()
2024-04-06 03:02:20 +08:00
for (j in 0..<n) {
row.add("#")
}
state.add(row)
}
val cols = BooleanArray(n) // 記錄列是否有皇后
val diags1 = BooleanArray(2 * n - 1) // 記錄主對角線上是否有皇后
val diags2 = BooleanArray(2 * n - 1) // 記錄次對角線上是否有皇后
2024-04-11 01:11:20 +08:00
val res = mutableListOf<MutableList<MutableList<String>>?>()
2024-04-06 03:02:20 +08:00
backtrack(0, n, state, res, cols, diags1, diags2)
return res
}
```
=== "Ruby"
```ruby title="n_queens.rb"
[class]{}-[func]{backtrack}
[class]{}-[func]{n_queens}
```
=== "Zig"
```zig title="n_queens.zig"
[class]{}-[func]{backtrack}
[class]{}-[func]{nQueens}
```
??? pythontutor "視覺化執行"
2024-04-11 01:11:20 +08:00
<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20backtrack%28%0A%20%20%20%20row%3A%20int%2C%0A%20%20%20%20n%3A%20int%2C%0A%20%20%20%20state%3A%20list%5Blist%5Bstr%5D%5D%2C%0A%20%20%20%20res%3A%20list%5Blist%5Blist%5Bstr%5D%5D%5D%2C%0A%20%20%20%20cols%3A%20list%5Bbool%5D%2C%0A%20%20%20%20diags1%3A%20list%5Bbool%5D%2C%0A%20%20%20%20diags2%3A%20list%5Bbool%5D%2C%0A%29%3A%0A%20%20%20%20%22%22%22%E5%9B%9E%E6%BA%AF%E6%BC%94%E7%AE%97%E6%B3%95%EF%BC%9AN%20%E7%9A%87%E5%90%8E%22%22%22%0A%20%20%20%20%23%20%E7%95%B6%E6%94%BE%E7%BD%AE%E5%AE%8C%E6%89%80%E6%9C%89%E8%A1%8C%E6%99%82%EF%BC%8C%E8%A8%98%E9%8C%84%E8%A7%A3%0A%20%20%20%20if%20row%20%3D%3D%20n%3A%0A%20%20%20%20%20%20%20%20res.append%28%5Blist%28row%29%20for%20row%20in%20state%5D%29%0A%20%20%20%20%20%20%20%20return%0A%20%20%20%20%23%20%E8%B5%B0%E8%A8%AA%E6%89%80%E6%9C%89%E5%88%97%0A%20%20%20%20for%20col%20in%20range%28n%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E8%A8%88%E7%AE%97%E8%A9%B2%E6%A0%BC%E5%AD%90%E5%B0%8D%E6%87%89%E7%9A%84%E4%B8%BB%E5%B0%8D%E8%A7%92%E7%B7%9A%E5%92%8C%E6%AC%A1%E5%B0%8D%E8%A7%92%E7%B7%9A%0A%20%20%20%20%20%20%20%20diag1%20%3D%20row%20-%20col%20%2B%20n%20-%201%0A%20%20%20%20%20%20%20%20diag2%20%3D%20row%20%2B%20col%0A%20%20%20%20%20%20%20%20%23%20%E5%89%AA%E6%9E%9D%EF%BC%9A%E4%B8%8D%E5%85%81%E8%A8%B1%E8%A9%B2%E6%A0%BC%E5%AD%90%E6%89%80%E5%9C%A8%E5%88%97%E3%80%81%E4%B8%BB%E5%B0%8D%E8%A7%92%E7%B7%9A%E3%80%81%E6%AC%A1%E5%B0%8D%E8%A7%92%E7%B7%9A%E4%B8%8A%E5%AD%98%E5%9C%A8%E7%9A%87%E5%90%8E%0A%20%20%20%20%20%20%20%20if%20not%20cols%5Bcol%5D%20and%20not%20diags1%5Bdiag1%5D%20and%20not%20diags2%5Bdiag2%5D%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E5%98%97%E8%A9%A6%EF%BC%9A%E5%B0%87%E7%9A%87%E5%90%8E%E6%94%BE%E7%BD%AE%E5%9C%A8%E8%A9%B2%E6%A0%BC%E5%AD%90%0A%20%20%20%20%20%20%20%20%20%20%20%20state%5Brow%5D%5Bcol%5D%20%3D%20%22Q%22%0A%20%20%20%20%20%20%20%20%20%20%20%20cols%5Bcol%5D%20%3D%20diags1%5Bdiag1%5D%20%3D%20diags2%5Bdiag2%5D%20%3D%20True%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E6%94%BE%E7%BD%AE%E4%B8%8B%E4%B8%80%E8%A1%8C%0A%20%20%20%20%20%20%20%20%20%20%20%20backtrack%28row%20%2B%201%2C%20n%2C%20state%2C%20res%2C%20cols%2C%20diags1%2C%20diags2%29%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E5%9B%9E%E9%80%80%EF%BC%9A%E5%B0%87%E8%A9%B2%E6%A0%BC%E5%AD%90%E6%81%A2%E5%BE%A9%E7%82%BA%E7%A9%BA%E4%BD%8D%0A%20%20%20%20%20%20%20%20%20%20%20%20state%5Brow%5D%5Bcol%5D%20%3D%20%22%23%22%0A%20%20%20%20%20%20%20%20%20%20%20%20cols%5Bcol%5D%20%3D%20diags1%5Bdiag1%5D%20%3D%20diags2%5Bdiag2%5D%20%3D%20False%0A%0A%0Adef%20n_queens%28n%3A%20int%29%20-%3E%20list%5Blist%5Blist%5Bstr%5D%5D%5D%3A%0A%20%20%20%20%22%22%22%E6%B1%82%E8%A7%A3%20N%20%E7%9A%87%E5%90%8E%22%22%22%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%20n%2An%20%E5%A4%A7%E5%B0%8F%E7%9A%84%E6%A3%8B%E7%9B%A4%EF%BC%8C%E5%85%B6%E4%B8%AD%20%27Q%27%20%E4%BB%A3%E8%A1%A8%E7%9A%87%E5%90%8E%EF%BC%8C%27%23%27%20%E4%BB%A3%E8%A1%A8%E7%A9%BA%E4%BD%8D%0A%20%20%20%20state%20%3D%20%5B%5B%22%23%22%20for%20_%20in%20range%28n%29%5D%20for%20_%20in%20range%28n%29%5D%0A%20%20%20%20cols%20%3D%20%5BFalse%5D%20%2A%20n%20%20%23%20%E8%A8%98%E9%8C%84%E5%88%97%E6%98%AF%E5%90%A6%E6%9C%89%E7%9A%87%E5%90%8E%0A%20%20%20%20diags1%20%3D%20%5BFalse%5D%20%2A%20%282%20%2A%20n%20-%201%29%20%20%23%20%E8%A8%98%E9%8C%84%E4%B8%BB%E5%B0%8D%E8%A7%92%E7%B7%9A%E4%B8%8A%E6%98%AF%E5%90%A6%E6%9C%89%E7%9A%87%E5%90%8E%0A%20%20%20%20diags2%20%3D%20%5BFalse%5D%20%2A%20%282%20%2A%20n%20-%201%29%20%20%23%20%E8%A8%98%E9%8C%84%E6%AC%A1%E5%B0%8D%E8%A7%92%E7%B7%9A%E4%B8%8A%E6%98%AF%E5%90%A6%E6%9C%89%E7%9A%87%E5%90%8E%0A%20%20%20%20res%20%3D%20%5B%5D%0A%20%20%20%20backtrack%280%2C%20n%2C%20state%2C%20res%2C%20cols%2C%20diags1%2C%20diags2%29%0A%0A%20%20%20%20return%20res%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%204%0A%20%20%20%20res%20%3D%20n_queens%28n%29%0A%0A%20%20%20%20print%28f%22%E8%BC%B8%E5%85%A5%E6%A3%8B%E7%9B%A4%E9%95%B7%E5%AF%AC%E7%82%BA%20%7Bn%7D%22%29%0A%20%20%20%20print%28f%22%E7%9A%87%E5%90%8E%E6%94%B
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20backtrack%28%0A%20%20%20%20row%3A%20int%2C%0A%20%20%20%20n%3A%20int%2C%0A%20%20%20%20state%3A%20list%5Blist%5Bstr%5D%5D%2C%0A%20%20%20%20res%3A%20list%5Blist%5Blist%5Bstr%5D%5D%5D%2C%0A%20%20%20%20cols%3A%20list%5Bbool%5D%2C%0A%20%20%20%20diags1%3A%20list%5Bbool%5D%2C%0A%20%20%20%20diags2%3A%20list%5Bbool%5D%2C%0A%29%3A%0A%20%20%20%20%22%22%22%E5%9B%9E%E6%BA%AF%E6%BC%94%E7%AE%97%E6%B3%95%EF%BC%9AN%20%E7%9A%87%E5%90%8E%22%22%22%0A%20%20%20%20%23%20%E7%95%B6%E6%94%BE%E7%BD%AE%E5%AE%8C%E6%89%80%E6%9C%89%E8%A1%8C%E6%99%82%EF%BC%8C%E8%A8%98%E9%8C%84%E8%A7%A3%0A%20%20%20%20if%20row%20%3D%3D%20n%3A%0A%20%20%20%20%20%20%20%20res.append%28%5Blist%28row%29%20for%20row%20in%20state%5D%29%0A%20%20%20%20%20%20%20%20return%0A%20%20%20%20%23%20%E8%B5%B0%E8%A8%AA%E6%89%80%E6%9C%89%E5%88%97%0A%20%20%20%20for%20col%20in%20range%28n%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E8%A8%88%E7%AE%97%E8%A9%B2%E6%A0%BC%E5%AD%90%E5%B0%8D%E6%87%89%E7%9A%84%E4%B8%BB%E5%B0%8D%E8%A7%92%E7%B7%9A%E5%92%8C%E6%AC%A1%E5%B0%8D%E8%A7%92%E7%B7%9A%0A%20%20%20%20%20%20%20%20diag1%20%3D%20row%20-%20col%20%2B%20n%20-%201%0A%20%20%20%20%20%20%20%20diag2%20%3D%20row%20%2B%20col%0A%20%20%20%20%20%20%20%20%23%20%E5%89%AA%E6%9E%9D%EF%BC%9A%E4%B8%8D%E5%85%81%E8%A8%B1%E8%A9%B2%E6%A0%BC%E5%AD%90%E6%89%80%E5%9C%A8%E5%88%97%E3%80%81%E4%B8%BB%E5%B0%8D%E8%A7%92%E7%B7%9A%E3%80%81%E6%AC%A1%E5%B0%8D%E8%A7%92%E7%B7%9A%E4%B8%8A%E5%AD%98%E5%9C%A8%E7%9A%87%E5%90%8E%0A%20%20%20%20%20%20%20%20if%20not%20cols%5Bcol%5D%20and%20not%20diags1%5Bdiag1%5D%20and%20not%20diags2%5Bdiag2%5D%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E5%98%97%E8%A9%A6%EF%BC%9A%E5%B0%87%E7%9A%87%E5%90%8E%E6%94%BE%E7%BD%AE%E5%9C%A8%E8%A9%B2%E6%A0%BC%E5%AD%90%0A%20%20%20%20%20%20%20%20%20%20%20%20state%5Brow%5D%5Bcol%5D%20%3D%20%22Q%22%0A%20%20%20%20%20%20%20%20%20%20%20%20cols%5Bcol%5D%20%3D%20diags1%5Bdiag1%5D%20%3D%20diags2%5Bdiag2%5D%20%3D%20True%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E6%94%BE%E7%BD%AE%E4%B8%8B%E4%B8%80%E8%A1%8C%0A%20%20%20%20%20%20%20%20%20%20%20%20backtrack%28row%20%2B%201%2C%20n%2C%20state%2C%20res%2C%20cols%2C%20diags1%2C%20diags2%29%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E5%9B%9E%E9%80%80%EF%BC%9A%E5%B0%87%E8%A9%B2%E6%A0%BC%E5%AD%90%E6%81%A2%E5%BE%A9%E7%82%BA%E7%A9%BA%E4%BD%8D%0A%20%20%20%20%20%20%20%20%20%20%20%20state%5Brow%5D%5Bcol%5D%20%3D%20%22%23%22%0A%20%20%20%20%20%20%20%20%20%20%20%20cols%5Bcol%5D%20%3D%20diags1%5Bdiag1%5D%20%3D%20diags2%5Bdiag2%5D%20%3D%20False%0A%0A%0Adef%20n_queens%28n%3A%20int%29%20-%3E%20list%5Blist%5Blist%5Bstr%5D%5D%5D%3A%0A%20%20%20%20%22%22%22%E6%B1%82%E8%A7%A3%20N%20%E7%9A%87%E5%90%8E%22%22%22%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%20n%2An%20%E5%A4%A7%E5%B0%8F%E7%9A%84%E6%A3%8B%E7%9B%A4%EF%BC%8C%E5%85%B6%E4%B8%AD%20%27Q%27%20%E4%BB%A3%E8%A1%A8%E7%9A%87%E5%90%8E%EF%BC%8C%27%23%27%20%E4%BB%A3%E8%A1%A8%E7%A9%BA%E4%BD%8D%0A%20%20%20%20state%20%3D%20%5B%5B%22%23%22%20for%20_%20in%20range%28n%29%5D%20for%20_%20in%20range%28n%29%5D%0A%20%20%20%20cols%20%3D%20%5BFalse%5D%20%2A%20n%20%20%23%20%E8%A8%98%E9%8C%84%E5%88%97%E6%98%AF%E5%90%A6%E6%9C%89%E7%9A%87%E5%90%8E%0A%20%20%20%20diags1%20%3D%20%5BFalse%5D%20%2A%20%282%20%2A%20n%20-%201%29%20%20%23%20%E8%A8%98%E9%8C%84%E4%B8%BB%E5%B0%8D%E8%A7%92%E7%B7%9A%E4%B8%8A%E6%98%AF%E5%90%A6%E6%9C%89%E7%9A%87%E5%90%8E%0A%20%20%20%20diags2%20%3D%20%5BFalse%5D%20%2A%20%282%20%2A%20n%20-%201%29%20%20%23%20%E8%A8%98%E9%8C%84%E6%AC%A1%E5%B0%8D%E8%A7%92%E7%B7%9A%E4%B8%8A%E6%98%AF%E5%90%A6%E6%9C%89%E7%9A%87%E5%90%8E%0A%20%20%20%20res%20%3D%20%5B%5D%0A%20%20%20%20backtrack%280%2C%20n%2C%20state%2C%20res%2C%20cols%2C%20diags1%2C%20diags2%29%0A%0A%20%20%20%20return%20res%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%204%0A%20%20%20%20res%20%3D%20n_queens%28n%29%0A%0A%20%20%20%20print%28f%22%E8%BC%B8%E5%85%A5%E6%A3%8B%E7%9B%A4%E9%95%B7%E5%AF%AC%E7%82%BA%20%7Bn%7D%22%29%0A%20%20%20%20print%28f%22%E7%9A%87%E5%90%8E%E6%94%BE%E7%BD%AE%E6%96%B9%E6%A1%88%E5%85%B1%E6%9
2024-04-06 03:02:20 +08:00
逐行放置 $n$ 次,考慮列約束,則從第一行到最後一行分別有 $n$、$n-1$、$\dots$、$2$、$1$ 個選擇,使用 $O(n!)$ 時間。當記錄解時,需要複製矩陣 `state` 並新增進 `res` ,複製操作使用 $O(n^2)$ 時間。因此,**總體時間複雜度為 $O(n! \cdot n^2)$** 。實際上,根據對角線約束的剪枝也能夠大幅縮小搜尋空間,因而搜尋效率往往優於以上時間複雜度。
陣列 `state` 使用 $O(n^2)$ 空間,陣列 `cols`、`diags1` 和 `diags2` 皆使用 $O(n)$ 空間。最大遞迴深度為 $n$ ,使用 $O(n)$ 堆疊幀空間。因此,**空間複雜度為 $O(n^2)$** 。