hello-algo/chapter_tree/binary_tree.md

595 lines
18 KiB
Markdown
Raw Normal View History

2023-02-08 15:20:18 +08:00
---
comments: true
---
2023-02-28 20:06:23 +08:00
# 7.1.   二叉树
2023-02-08 15:20:18 +08:00
2023-04-10 23:59:31 +08:00
「二叉树 Binary Tree」是一种非线性数据结构代表着祖先与后代之间的派生关系体现着“一分为二”的分治逻辑。与链表类似二叉树的基本单元是节点每个节点包含一个「值」和两个「指针」。
2023-02-08 15:20:18 +08:00
=== "Java"
```java title=""
2023-04-09 04:34:58 +08:00
/* 二叉树节点类 */
2023-02-08 15:20:18 +08:00
class TreeNode {
2023-04-09 04:34:58 +08:00
int val; // 节点值
TreeNode left; // 左子节点指针
TreeNode right; // 右子节点指针
2023-02-08 15:20:18 +08:00
TreeNode(int x) { val = x; }
}
```
=== "C++"
```cpp title=""
2023-04-09 04:34:58 +08:00
/* 二叉树节点结构体 */
2023-02-08 15:20:18 +08:00
struct TreeNode {
2023-04-09 04:34:58 +08:00
int val; // 节点值
TreeNode *left; // 左子节点指针
TreeNode *right; // 右子节点指针
2023-02-08 15:20:18 +08:00
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
};
```
=== "Python"
```python title=""
class TreeNode:
2023-04-09 05:30:47 +08:00
"""二叉树节点类"""
2023-03-12 18:46:03 +08:00
def __init__(self, val: int):
2023-04-09 04:34:58 +08:00
self.val: int = val # 节点值
self.left: Optional[TreeNode] = None # 左子节点指针
self.right: Optional[TreeNode] = None # 右子节点指针
2023-02-08 15:20:18 +08:00
```
=== "Go"
```go title=""
2023-04-09 04:34:58 +08:00
/* 二叉树节点结构体 */
2023-02-08 15:20:18 +08:00
type TreeNode struct {
Val int
Left *TreeNode
Right *TreeNode
}
2023-04-09 04:34:58 +08:00
/* 节点初始化方法 */
2023-02-08 15:20:18 +08:00
func NewTreeNode(v int) *TreeNode {
return &TreeNode{
Left: nil,
Right: nil,
Val: v,
}
}
```
=== "JavaScript"
```javascript title=""
2023-04-09 04:34:58 +08:00
/* 二叉树节点类 */
2023-02-08 15:20:18 +08:00
function TreeNode(val, left, right) {
2023-04-09 04:34:58 +08:00
this.val = (val === undefined ? 0 : val); // 节点值
this.left = (left === undefined ? null : left); // 左子节点指针
this.right = (right === undefined ? null : right); // 右子节点指针
2023-02-08 15:20:18 +08:00
}
```
=== "TypeScript"
```typescript title=""
2023-04-09 04:34:58 +08:00
/* 二叉树节点类 */
2023-02-08 15:20:18 +08:00
class TreeNode {
val: number;
left: TreeNode | null;
right: TreeNode | null;
constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
2023-04-09 04:34:58 +08:00
this.val = val === undefined ? 0 : val; // 节点值
this.left = left === undefined ? null : left; // 左子节点指针
this.right = right === undefined ? null : right; // 右子节点指针
2023-02-08 15:20:18 +08:00
}
}
```
=== "C"
```c title=""
```
=== "C#"
```csharp title=""
2023-04-09 04:34:58 +08:00
/* 二叉树节点类 */
2023-02-08 15:20:18 +08:00
class TreeNode {
2023-04-09 04:34:58 +08:00
int val; // 节点值
TreeNode? left; // 左子节点指针
TreeNode? right; // 右子节点指针
2023-02-08 15:20:18 +08:00
TreeNode(int x) { val = x; }
}
```
=== "Swift"
```swift title=""
2023-04-09 04:34:58 +08:00
/* 二叉树节点类 */
2023-02-08 15:20:18 +08:00
class TreeNode {
2023-04-09 04:34:58 +08:00
var val: Int // 节点值
var left: TreeNode? // 左子节点指针
var right: TreeNode? // 右子节点指针
2023-02-08 15:20:18 +08:00
init(x: Int) {
val = x
}
}
```
=== "Zig"
```zig title=""
```
2023-04-10 23:59:31 +08:00
节点的两个指针分别指向「左子节点」和「右子节点」,同时该节点被称为这两个子节点的「父节点」。当给定一个二叉树的节点时,我们将该节点的左子节点及其以下节点形成的树称为该节点的「左子树」,同理可得「右子树」。
2023-02-08 15:20:18 +08:00
2023-04-10 23:59:31 +08:00
**在二叉树中,除叶节点外,其他所有节点都包含子节点和非空子树**。例如,在以下示例中,若将“节点 2”视为父节点则其左子节点和右子节点分别是“节点 4”和“节点 5”左子树是“节点 4 及其以下节点形成的树”,右子树是“节点 5 及其以下节点形成的树”。
2023-02-08 15:20:18 +08:00
2023-04-09 04:34:58 +08:00
![父节点、子节点、子树](binary_tree.assets/binary_tree_definition.png)
2023-02-08 15:20:18 +08:00
2023-04-09 04:34:58 +08:00
<p align="center"> Fig. 父节点、子节点、子树 </p>
2023-02-26 19:53:26 +08:00
2023-02-24 18:45:27 +08:00
## 7.1.1. &nbsp; 二叉树常见术语
2023-02-08 15:20:18 +08:00
2023-04-10 23:59:31 +08:00
二叉树涉及的术语较多,建议尽量理解并记住。
2023-02-08 15:20:18 +08:00
2023-04-10 23:59:31 +08:00
- 「根节点 Root Node」位于二叉树顶层的节点没有父节点
- 「叶节点 Leaf Node」没有子节点的节点其两个指针均指向 $\text{null}$
- 节点的「层 Level」从顶至底递增根节点所在层为 1
- 节点的「度 Degree」节点的子节点的数量。在二叉树中度的范围是 0, 1, 2
- 「边 Edge」连接两个节点的线段即节点指针
- 二叉树的「高度」:从根节点到最远叶节点所经过的边的数量;
- 节点的「深度 Depth」 :从根节点到该节点所经过的边的数量;
- 节点的「高度 Height」从最远叶节点到该节点所经过的边的数量
2023-02-08 15:20:18 +08:00
2023-02-26 18:17:57 +08:00
![二叉树的常用术语](binary_tree.assets/binary_tree_terminology.png)
2023-02-08 15:20:18 +08:00
2023-02-26 19:53:26 +08:00
<p align="center"> Fig. 二叉树的常用术语 </p>
2023-02-08 15:20:18 +08:00
!!! tip "高度与深度的定义"
2023-04-10 23:59:31 +08:00
请注意,我们通常将「高度」和「深度」定义为“走过边的数量”,但有些题目或教材可能会将其定义为“走过节点的数量”。在这种情况下,高度和深度都需要加 1 。
2023-02-08 15:20:18 +08:00
2023-02-24 18:45:27 +08:00
## 7.1.2. &nbsp; 二叉树基本操作
2023-02-08 15:20:18 +08:00
2023-04-10 23:59:31 +08:00
**初始化二叉树**。与链表类似,首先初始化节点,然后构建引用指向(即指针)。
2023-02-08 15:20:18 +08:00
=== "Java"
```java title="binary_tree.java"
2023-04-09 04:34:58 +08:00
// 初始化节点
2023-02-08 15:20:18 +08:00
TreeNode n1 = new TreeNode(1);
TreeNode n2 = new TreeNode(2);
TreeNode n3 = new TreeNode(3);
TreeNode n4 = new TreeNode(4);
TreeNode n5 = new TreeNode(5);
// 构建引用指向(即指针)
n1.left = n2;
n1.right = n3;
n2.left = n4;
n2.right = n5;
```
=== "C++"
```cpp title="binary_tree.cpp"
/* 初始化二叉树 */
2023-04-09 04:34:58 +08:00
// 初始化节点
2023-02-08 15:20:18 +08:00
TreeNode* n1 = new TreeNode(1);
TreeNode* n2 = new TreeNode(2);
TreeNode* n3 = new TreeNode(3);
TreeNode* n4 = new TreeNode(4);
TreeNode* n5 = new TreeNode(5);
// 构建引用指向(即指针)
n1->left = n2;
n1->right = n3;
n2->left = n4;
n2->right = n5;
```
=== "Python"
```python title="binary_tree.py"
2023-04-09 05:30:47 +08:00
# 初始化二叉树
2023-04-09 04:34:58 +08:00
# 初始化节点
2023-02-08 15:20:18 +08:00
n1 = TreeNode(val=1)
n2 = TreeNode(val=2)
n3 = TreeNode(val=3)
n4 = TreeNode(val=4)
n5 = TreeNode(val=5)
# 构建引用指向(即指针)
n1.left = n2
n1.right = n3
n2.left = n4
n2.right = n5
```
=== "Go"
```go title="binary_tree.go"
/* 初始化二叉树 */
2023-04-09 04:34:58 +08:00
// 初始化节点
2023-02-08 15:20:18 +08:00
n1 := NewTreeNode(1)
n2 := NewTreeNode(2)
n3 := NewTreeNode(3)
n4 := NewTreeNode(4)
n5 := NewTreeNode(5)
// 构建引用指向(即指针)
n1.Left = n2
n1.Right = n3
n2.Left = n4
n2.Right = n5
```
=== "JavaScript"
```javascript title="binary_tree.js"
/* 初始化二叉树 */
2023-04-09 04:34:58 +08:00
// 初始化节点
2023-02-08 15:20:18 +08:00
let n1 = new TreeNode(1),
n2 = new TreeNode(2),
n3 = new TreeNode(3),
n4 = new TreeNode(4),
n5 = new TreeNode(5);
// 构建引用指向(即指针)
n1.left = n2;
n1.right = n3;
n2.left = n4;
n2.right = n5;
```
=== "TypeScript"
```typescript title="binary_tree.ts"
/* 初始化二叉树 */
2023-04-09 04:34:58 +08:00
// 初始化节点
2023-02-08 15:20:18 +08:00
let n1 = new TreeNode(1),
n2 = new TreeNode(2),
n3 = new TreeNode(3),
n4 = new TreeNode(4),
n5 = new TreeNode(5);
// 构建引用指向(即指针)
n1.left = n2;
n1.right = n3;
n2.left = n4;
n2.right = n5;
```
=== "C"
```c title="binary_tree.c"
```
=== "C#"
```csharp title="binary_tree.cs"
/* 初始化二叉树 */
2023-04-09 04:34:58 +08:00
// 初始化节点
2023-02-08 15:20:18 +08:00
TreeNode n1 = new TreeNode(1);
TreeNode n2 = new TreeNode(2);
TreeNode n3 = new TreeNode(3);
TreeNode n4 = new TreeNode(4);
TreeNode n5 = new TreeNode(5);
// 构建引用指向(即指针)
n1.left = n2;
n1.right = n3;
n2.left = n4;
n2.right = n5;
```
=== "Swift"
```swift title="binary_tree.swift"
2023-04-09 04:34:58 +08:00
// 初始化节点
2023-02-08 15:20:18 +08:00
let n1 = TreeNode(x: 1)
let n2 = TreeNode(x: 2)
let n3 = TreeNode(x: 3)
let n4 = TreeNode(x: 4)
let n5 = TreeNode(x: 5)
// 构建引用指向(即指针)
n1.left = n2
n1.right = n3
n2.left = n4
n2.right = n5
```
=== "Zig"
```zig title="binary_tree.zig"
```
2023-04-10 23:59:31 +08:00
**插入与删除节点**。与链表类似,通过修改指针来实现插入与删除节点。
2023-02-08 15:20:18 +08:00
2023-04-09 04:34:58 +08:00
![在二叉树中插入与删除节点](binary_tree.assets/binary_tree_add_remove.png)
2023-02-08 15:20:18 +08:00
2023-04-09 04:34:58 +08:00
<p align="center"> Fig. 在二叉树中插入与删除节点 </p>
2023-02-26 19:53:26 +08:00
2023-02-08 15:20:18 +08:00
=== "Java"
```java title="binary_tree.java"
TreeNode P = new TreeNode(0);
2023-04-09 04:34:58 +08:00
// 在 n1 -> n2 中间插入节点 P
2023-02-08 15:20:18 +08:00
n1.left = P;
P.left = n2;
2023-04-09 04:34:58 +08:00
// 删除节点 P
2023-02-08 15:20:18 +08:00
n1.left = n2;
```
=== "C++"
```cpp title="binary_tree.cpp"
2023-04-09 04:34:58 +08:00
/* 插入与删除节点 */
2023-02-08 15:20:18 +08:00
TreeNode* P = new TreeNode(0);
2023-04-09 04:34:58 +08:00
// 在 n1 -> n2 中间插入节点 P
2023-02-08 15:20:18 +08:00
n1->left = P;
P->left = n2;
2023-04-09 04:34:58 +08:00
// 删除节点 P
2023-02-08 15:20:18 +08:00
n1->left = n2;
```
=== "Python"
```python title="binary_tree.py"
2023-04-09 05:30:47 +08:00
# 插入与删除节点
2023-02-08 15:20:18 +08:00
p = TreeNode(0)
2023-04-09 04:34:58 +08:00
# 在 n1 -> n2 中间插入节点 P
2023-02-08 15:20:18 +08:00
n1.left = p
p.left = n2
2023-04-09 04:34:58 +08:00
# 删除节点 P
2023-02-08 15:20:18 +08:00
n1.left = n2
```
=== "Go"
```go title="binary_tree.go"
2023-04-09 04:34:58 +08:00
/* 插入与删除节点 */
// 在 n1 -> n2 中间插入节点 P
2023-02-08 15:20:18 +08:00
p := NewTreeNode(0)
n1.Left = p
p.Left = n2
2023-04-09 04:34:58 +08:00
// 删除节点 P
2023-02-08 15:20:18 +08:00
n1.Left = n2
```
=== "JavaScript"
```javascript title="binary_tree.js"
2023-04-09 04:34:58 +08:00
/* 插入与删除节点 */
2023-02-08 15:20:18 +08:00
let P = new TreeNode(0);
2023-04-09 04:34:58 +08:00
// 在 n1 -> n2 中间插入节点 P
2023-02-08 15:20:18 +08:00
n1.left = P;
P.left = n2;
2023-04-09 04:34:58 +08:00
// 删除节点 P
2023-02-08 15:20:18 +08:00
n1.left = n2;
```
=== "TypeScript"
```typescript title="binary_tree.ts"
2023-04-09 04:34:58 +08:00
/* 插入与删除节点 */
2023-02-08 15:20:18 +08:00
const P = new TreeNode(0);
2023-04-09 04:34:58 +08:00
// 在 n1 -> n2 中间插入节点 P
2023-02-08 15:20:18 +08:00
n1.left = P;
P.left = n2;
2023-04-09 04:34:58 +08:00
// 删除节点 P
2023-02-08 15:20:18 +08:00
n1.left = n2;
```
=== "C"
```c title="binary_tree.c"
```
=== "C#"
```csharp title="binary_tree.cs"
2023-04-09 04:34:58 +08:00
/* 插入与删除节点 */
2023-02-08 15:20:18 +08:00
TreeNode P = new TreeNode(0);
2023-04-09 04:34:58 +08:00
// 在 n1 -> n2 中间插入节点 P
2023-02-08 15:20:18 +08:00
n1.left = P;
P.left = n2;
2023-04-09 04:34:58 +08:00
// 删除节点 P
2023-02-08 15:20:18 +08:00
n1.left = n2;
```
=== "Swift"
```swift title="binary_tree.swift"
let P = TreeNode(x: 0)
2023-04-09 04:34:58 +08:00
// 在 n1 -> n2 中间插入节点 P
2023-02-08 15:20:18 +08:00
n1.left = P
P.left = n2
2023-04-09 04:34:58 +08:00
// 删除节点 P
2023-02-08 15:20:18 +08:00
n1.left = n2
```
=== "Zig"
```zig title="binary_tree.zig"
```
!!! note
2023-04-10 23:59:31 +08:00
需要注意的是,插入节点可能会改变二叉树的原有逻辑结构,而删除节点通常意味着删除该节点及其所有子树。因此,在二叉树中,插入与删除操作通常是由一套操作配合完成的,以实现有实际意义的操作。
2023-02-08 15:20:18 +08:00
2023-02-24 18:45:27 +08:00
## 7.1.3. &nbsp; 常见二叉树类型
2023-02-08 15:20:18 +08:00
### 完美二叉树
2023-04-10 23:59:31 +08:00
「完美二叉树 Perfect Binary Tree」除了最底层外其余所有层的节点都被完全填满。在完美二叉树中叶节点的度为 $0$ ,其余所有节点的度都为 $2$ ;若树高度为 $h$ ,则节点总数为 $2^{h+1} - 1$ ,呈现标准的指数级关系,反映了自然界中常见的细胞分裂现象。
2023-02-08 15:20:18 +08:00
!!! tip
2023-04-10 23:59:31 +08:00
在中文社区中,完美二叉树常被称为「满二叉树」,请注意区分。
2023-02-08 15:20:18 +08:00
2023-02-26 18:17:57 +08:00
![完美二叉树](binary_tree.assets/perfect_binary_tree.png)
2023-02-08 15:20:18 +08:00
2023-02-26 19:53:26 +08:00
<p align="center"> Fig. 完美二叉树 </p>
2023-02-08 15:20:18 +08:00
### 完全二叉树
2023-04-09 04:34:58 +08:00
「完全二叉树 Complete Binary Tree」只有最底层的节点未被填满且最底层节点尽量靠左填充。
2023-02-08 15:20:18 +08:00
2023-02-26 18:17:57 +08:00
![完全二叉树](binary_tree.assets/complete_binary_tree.png)
2023-02-08 15:20:18 +08:00
2023-02-26 19:53:26 +08:00
<p align="center"> Fig. 完全二叉树 </p>
2023-02-08 15:20:18 +08:00
### 完满二叉树
2023-04-09 04:34:58 +08:00
「完满二叉树 Full Binary Tree」除了叶节点之外其余所有节点都有两个子节点。
2023-02-08 15:20:18 +08:00
2023-02-26 18:17:57 +08:00
![完满二叉树](binary_tree.assets/full_binary_tree.png)
2023-02-08 15:20:18 +08:00
2023-02-26 19:53:26 +08:00
<p align="center"> Fig. 完满二叉树 </p>
2023-02-08 15:20:18 +08:00
### 平衡二叉树
2023-04-10 23:59:31 +08:00
「平衡二叉树 Balanced Binary Tree」中任意节点的左子树和右子树的高度之差的绝对值不超过 1 。
2023-02-08 15:20:18 +08:00
2023-02-26 18:17:57 +08:00
![平衡二叉树](binary_tree.assets/balanced_binary_tree.png)
2023-02-08 15:20:18 +08:00
2023-02-26 19:53:26 +08:00
<p align="center"> Fig. 平衡二叉树 </p>
2023-02-24 18:45:27 +08:00
## 7.1.4. &nbsp; 二叉树的退化
2023-02-08 15:20:18 +08:00
2023-04-10 23:59:31 +08:00
当二叉树的每层节点都被填满时,达到「完美二叉树」;而当所有节点都偏向一侧时,二叉树退化为「链表」。
2023-02-08 15:20:18 +08:00
2023-04-10 23:59:31 +08:00
- 完美二叉树是理想情况,可以充分发挥二叉树“分治”的优势;
2023-02-08 15:20:18 +08:00
- 链表则是另一个极端,各项操作都变为线性操作,时间复杂度退化至 $O(n)$
2023-04-13 22:45:31 +08:00
![二叉树的最佳与最差结构](binary_tree.assets/binary_tree_corner_cases.png)
2023-02-08 15:20:18 +08:00
2023-04-13 22:45:31 +08:00
<p align="center"> Fig. 二叉树的最佳与最差结构 </p>
2023-02-26 19:53:26 +08:00
2023-04-09 04:34:58 +08:00
如下表所示,在最佳和最差结构下,二叉树的叶节点数量、节点总数、高度等达到极大或极小值。
2023-02-08 15:20:18 +08:00
<div class="center-table" markdown>
| | 完美二叉树 | 链表 |
| ----------------------------- | ---------- | ---------- |
2023-04-09 04:34:58 +08:00
| 第 $i$ 层的节点数量 | $2^{i-1}$ | $1$ |
| 树的高度为 $h$ 时的叶节点数量 | $2^h$ | $1$ |
| 树的高度为 $h$ 时的节点总数 | $2^{h+1} - 1$ | $h + 1$ |
| 树的节点总数为 $n$ 时的高度 | $\log_2 (n+1) - 1$ | $n - 1$ |
2023-02-08 15:20:18 +08:00
</div>
2023-02-24 18:45:27 +08:00
## 7.1.5. &nbsp; 二叉树表示方式 *
2023-02-08 15:20:18 +08:00
2023-04-10 23:59:31 +08:00
我们通常使用二叉树的「链表表示」,即存储单位为节点 `TreeNode` ,节点之间通过指针相连接。本文前述示例代码展示了二叉树在链表表示下的各项基本操作。
2023-02-08 15:20:18 +08:00
2023-04-10 23:59:31 +08:00
那么,能否用「数组」来表示二叉树呢?答案是肯定的。先来分析一个简单案例,给定一个「完美二叉树」,将节点按照层序遍历的顺序编号(从 0 开始),那么可以推导得出父节点索引与子节点索引之间的“映射公式”:**若节点的索引为 $i$ ,则该节点的左子节点索引为 $2i + 1$ ,右子节点索引为 $2i + 2$** 。
2023-02-08 15:20:18 +08:00
2023-04-10 23:59:31 +08:00
**本质上,映射公式的作用相当于链表中的指针**。对于层序遍历序列中的任意节点,我们都可以使用映射公式来访问其子节点。因此,我们可以将二叉树的层序遍历序列存储到数组中,利用以上映射公式来表示二叉树。
2023-02-08 15:20:18 +08:00
2023-02-26 18:17:57 +08:00
![完美二叉树的数组表示](binary_tree.assets/array_representation_mapping.png)
2023-02-08 15:20:18 +08:00
2023-02-26 19:53:26 +08:00
<p align="center"> Fig. 完美二叉树的数组表示 </p>
2023-04-10 23:59:31 +08:00
然而,完美二叉树只是一个特例。在二叉树的中间层,通常存在许多 $\text{null}$ ,而层序遍历序列并不包含这些 $\text{null}$ 。我们无法仅凭序列来推测空节点的数量和分布位置,**这意味着理论上存在许多种二叉树都符合该层序遍历序列**。显然,在这种情况下,我们无法使用数组来存储二叉树。
2023-02-08 15:20:18 +08:00
2023-02-26 18:17:57 +08:00
![给定数组对应多种二叉树可能性](binary_tree.assets/array_representation_without_empty.png)
2023-02-08 15:20:18 +08:00
2023-02-26 19:53:26 +08:00
<p align="center"> Fig. 给定数组对应多种二叉树可能性 </p>
2023-04-10 23:59:31 +08:00
为了解决这个问题,我们可以考虑按照完美二叉树的形式来表示所有二叉树,**并在序列中使用特殊符号来显式地表示 $\text{null}$**。如下图所示,这样处理后,层序遍历序列就可以唯一表示二叉树了。
2023-02-08 15:20:18 +08:00
=== "Java"
```java title=""
/* 二叉树的数组表示 */
// 使用 int 的包装类 Integer ,就可以使用 null 来标记空位
Integer[] tree = { 1, 2, 3, 4, null, 6, 7, 8, 9, null, null, 12, null, null, 15 };
```
=== "C++"
```cpp title=""
/* 二叉树的数组表示 */
// 为了符合数据类型为 int ,使用 int 最大值标记空位
2023-04-09 04:34:58 +08:00
// 该方法的使用前提是没有节点的值 = INT_MAX
2023-02-08 15:20:18 +08:00
vector<int> tree = { 1, 2, 3, 4, INT_MAX, 6, 7, 8, 9, INT_MAX, INT_MAX, 12, INT_MAX, INT_MAX, 15 };
```
=== "Python"
```python title=""
2023-04-09 05:30:47 +08:00
# 二叉树的数组表示
2023-02-08 15:20:18 +08:00
# 直接使用 None 来表示空位
tree = [1, 2, 3, 4, None, 6, 7, 8, 9, None, None, 12, None, None, 15]
```
=== "Go"
```go title=""
2023-03-16 22:50:35 +08:00
/* 二叉树的数组表示 */
// 使用 any 类型的切片, 就可以使用 nil 来标记空位
tree := []any{1, 2, 3, 4, nil, 6, 7, 8, 9, nil, nil, 12, nil, nil, 15}
2023-02-08 15:20:18 +08:00
```
=== "JavaScript"
```javascript title=""
/* 二叉树的数组表示 */
// 直接使用 null 来表示空位
let tree = [1, 2, 3, 4, null, 6, 7, 8, 9, null, null, 12, null, null, 15];
```
=== "TypeScript"
```typescript title=""
/* 二叉树的数组表示 */
// 直接使用 null 来表示空位
let tree: (number | null)[] = [1, 2, 3, 4, null, 6, 7, 8, 9, null, null, 12, null, null, 15];
```
=== "C"
```c title=""
```
=== "C#"
```csharp title=""
/* 二叉树的数组表示 */
// 使用 int? 可空类型 ,就可以使用 null 来标记空位
int?[] tree = { 1, 2, 3, 4, null, 6, 7, 8, 9, null, null, 12, null, null, 15 };
```
=== "Swift"
```swift title=""
/* 二叉树的数组表示 */
// 使用 Int? 可空类型 ,就可以使用 nil 来标记空位
let tree: [Int?] = [1, 2, 3, 4, nil, 6, 7, 8, 9, nil, nil, 12, nil, nil, 15]
```
=== "Zig"
```zig title=""
```
2023-02-26 18:17:57 +08:00
![任意类型二叉树的数组表示](binary_tree.assets/array_representation_with_empty.png)
2023-02-08 15:20:18 +08:00
2023-02-26 19:53:26 +08:00
<p align="center"> Fig. 任意类型二叉树的数组表示 </p>
2023-04-10 23:59:31 +08:00
**完全二叉树非常适合使用数组来表示**。回顾「完全二叉树」的定义,$\text{null}$ 只出现在最底层,并且最底层的节点尽量靠左。这意味着,**所有空节点一定出现在层序遍历序列的末尾**。由于我们事先知道了所有 $\text{null}$ 的位置,因此在使用数组表示完全二叉树时,可以省略存储它们。
2023-02-08 15:20:18 +08:00
2023-02-26 18:17:57 +08:00
![完全二叉树的数组表示](binary_tree.assets/array_representation_complete_binary_tree.png)
2023-02-08 15:20:18 +08:00
2023-02-26 19:53:26 +08:00
<p align="center"> Fig. 完全二叉树的数组表示 </p>
2023-04-10 23:59:31 +08:00
数组表示具有两个显著优点:首先,它不需要存储指针,从而节省了空间;其次,它允许随机访问节点。然而,当二叉树中存在大量 $\text{null}$ 时,数组中包含的节点数据比重较低,导致有效空间利用率降低。