mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-25 14:16:29 +08:00
160 lines
4.3 KiB
Java
160 lines
4.3 KiB
Java
|
/**
|
||
|
* File: my_heap.java
|
||
|
* Created Time: 2023-01-07
|
||
|
* Author: krahets (krahets@163.com)
|
||
|
*/
|
||
|
|
||
|
package chapter_heap;
|
||
|
|
||
|
import utils.*;
|
||
|
import java.util.*;
|
||
|
|
||
|
/* 大頂堆積 */
|
||
|
class MaxHeap {
|
||
|
// 使用串列而非陣列,這樣無須考慮擴容問題
|
||
|
private List<Integer> maxHeap;
|
||
|
|
||
|
/* 建構子,根據輸入串列建堆積 */
|
||
|
public MaxHeap(List<Integer> nums) {
|
||
|
// 將串列元素原封不動新增進堆積
|
||
|
maxHeap = new ArrayList<>(nums);
|
||
|
// 堆積化除葉節點以外的其他所有節點
|
||
|
for (int i = parent(size() - 1); i >= 0; i--) {
|
||
|
siftDown(i);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* 獲取左子節點的索引 */
|
||
|
private int left(int i) {
|
||
|
return 2 * i + 1;
|
||
|
}
|
||
|
|
||
|
/* 獲取右子節點的索引 */
|
||
|
private int right(int i) {
|
||
|
return 2 * i + 2;
|
||
|
}
|
||
|
|
||
|
/* 獲取父節點的索引 */
|
||
|
private int parent(int i) {
|
||
|
return (i - 1) / 2; // 向下整除
|
||
|
}
|
||
|
|
||
|
/* 交換元素 */
|
||
|
private void swap(int i, int j) {
|
||
|
int tmp = maxHeap.get(i);
|
||
|
maxHeap.set(i, maxHeap.get(j));
|
||
|
maxHeap.set(j, tmp);
|
||
|
}
|
||
|
|
||
|
/* 獲取堆積大小 */
|
||
|
public int size() {
|
||
|
return maxHeap.size();
|
||
|
}
|
||
|
|
||
|
/* 判斷堆積是否為空 */
|
||
|
public boolean isEmpty() {
|
||
|
return size() == 0;
|
||
|
}
|
||
|
|
||
|
/* 訪問堆積頂元素 */
|
||
|
public int peek() {
|
||
|
return maxHeap.get(0);
|
||
|
}
|
||
|
|
||
|
/* 元素入堆積 */
|
||
|
public void push(int val) {
|
||
|
// 新增節點
|
||
|
maxHeap.add(val);
|
||
|
// 從底至頂堆積化
|
||
|
siftUp(size() - 1);
|
||
|
}
|
||
|
|
||
|
/* 從節點 i 開始,從底至頂堆積化 */
|
||
|
private void siftUp(int i) {
|
||
|
while (true) {
|
||
|
// 獲取節點 i 的父節點
|
||
|
int p = parent(i);
|
||
|
// 當“越過根節點”或“節點無須修復”時,結束堆積化
|
||
|
if (p < 0 || maxHeap.get(i) <= maxHeap.get(p))
|
||
|
break;
|
||
|
// 交換兩節點
|
||
|
swap(i, p);
|
||
|
// 迴圈向上堆積化
|
||
|
i = p;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* 元素出堆積 */
|
||
|
public int pop() {
|
||
|
// 判空處理
|
||
|
if (isEmpty())
|
||
|
throw new IndexOutOfBoundsException();
|
||
|
// 交換根節點與最右葉節點(交換首元素與尾元素)
|
||
|
swap(0, size() - 1);
|
||
|
// 刪除節點
|
||
|
int val = maxHeap.remove(size() - 1);
|
||
|
// 從頂至底堆積化
|
||
|
siftDown(0);
|
||
|
// 返回堆積頂元素
|
||
|
return val;
|
||
|
}
|
||
|
|
||
|
/* 從節點 i 開始,從頂至底堆積化 */
|
||
|
private void siftDown(int i) {
|
||
|
while (true) {
|
||
|
// 判斷節點 i, l, r 中值最大的節點,記為 ma
|
||
|
int l = left(i), r = right(i), ma = i;
|
||
|
if (l < size() && maxHeap.get(l) > maxHeap.get(ma))
|
||
|
ma = l;
|
||
|
if (r < size() && maxHeap.get(r) > maxHeap.get(ma))
|
||
|
ma = r;
|
||
|
// 若節點 i 最大或索引 l, r 越界,則無須繼續堆積化,跳出
|
||
|
if (ma == i)
|
||
|
break;
|
||
|
// 交換兩節點
|
||
|
swap(i, ma);
|
||
|
// 迴圈向下堆積化
|
||
|
i = ma;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* 列印堆積(二元樹) */
|
||
|
public void print() {
|
||
|
Queue<Integer> queue = new PriorityQueue<>((a, b) -> { return b - a; });
|
||
|
queue.addAll(maxHeap);
|
||
|
PrintUtil.printHeap(queue);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public class my_heap {
|
||
|
public static void main(String[] args) {
|
||
|
/* 初始化大頂堆積 */
|
||
|
MaxHeap maxHeap = new MaxHeap(Arrays.asList(9, 8, 6, 6, 7, 5, 2, 1, 4, 3, 6, 2));
|
||
|
System.out.println("\n輸入串列並建堆積後");
|
||
|
maxHeap.print();
|
||
|
|
||
|
/* 獲取堆積頂元素 */
|
||
|
int peek = maxHeap.peek();
|
||
|
System.out.format("\n堆積頂元素為 %d\n", peek);
|
||
|
|
||
|
/* 元素入堆積 */
|
||
|
int val = 7;
|
||
|
maxHeap.push(val);
|
||
|
System.out.format("\n元素 %d 入堆積後\n", val);
|
||
|
maxHeap.print();
|
||
|
|
||
|
/* 堆積頂元素出堆積 */
|
||
|
peek = maxHeap.pop();
|
||
|
System.out.format("\n堆積頂元素 %d 出堆積後\n", peek);
|
||
|
maxHeap.print();
|
||
|
|
||
|
/* 獲取堆積大小 */
|
||
|
int size = maxHeap.size();
|
||
|
System.out.format("\n堆積元素數量為 %d\n", size);
|
||
|
|
||
|
/* 判斷堆積是否為空 */
|
||
|
boolean isEmpty = maxHeap.isEmpty();
|
||
|
System.out.format("\n堆積是否為空 %b\n", isEmpty);
|
||
|
}
|
||
|
}
|