mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-26 14:56:28 +08:00
131 lines
2.3 KiB
Go
131 lines
2.3 KiB
Go
|
// File: time_complexity.go
|
||
|
// Created Time: 2022-12-13
|
||
|
// Author: msk397 (machangxinq@gmail.com)
|
||
|
|
||
|
package chapter_computational_complexity
|
||
|
|
||
|
/* 常數階 */
|
||
|
func constant(n int) int {
|
||
|
count := 0
|
||
|
size := 100000
|
||
|
for i := 0; i < size; i++ {
|
||
|
count++
|
||
|
}
|
||
|
return count
|
||
|
}
|
||
|
|
||
|
/* 線性階 */
|
||
|
func linear(n int) int {
|
||
|
count := 0
|
||
|
for i := 0; i < n; i++ {
|
||
|
count++
|
||
|
}
|
||
|
return count
|
||
|
}
|
||
|
|
||
|
/* 線性階(走訪陣列) */
|
||
|
func arrayTraversal(nums []int) int {
|
||
|
count := 0
|
||
|
// 迴圈次數與陣列長度成正比
|
||
|
for range nums {
|
||
|
count++
|
||
|
}
|
||
|
return count
|
||
|
}
|
||
|
|
||
|
/* 平方階 */
|
||
|
func quadratic(n int) int {
|
||
|
count := 0
|
||
|
// 迴圈次數與資料大小 n 成平方關係
|
||
|
for i := 0; i < n; i++ {
|
||
|
for j := 0; j < n; j++ {
|
||
|
count++
|
||
|
}
|
||
|
}
|
||
|
return count
|
||
|
}
|
||
|
|
||
|
/* 平方階(泡沫排序) */
|
||
|
func bubbleSort(nums []int) int {
|
||
|
count := 0 // 計數器
|
||
|
// 外迴圈:未排序區間為 [0, i]
|
||
|
for i := len(nums) - 1; i > 0; i-- {
|
||
|
// 內迴圈:將未排序區間 [0, i] 中的最大元素交換至該區間的最右端
|
||
|
for j := 0; j < i; j++ {
|
||
|
if nums[j] > nums[j+1] {
|
||
|
// 交換 nums[j] 與 nums[j + 1]
|
||
|
tmp := nums[j]
|
||
|
nums[j] = nums[j+1]
|
||
|
nums[j+1] = tmp
|
||
|
count += 3 // 元素交換包含 3 個單元操作
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return count
|
||
|
}
|
||
|
|
||
|
/* 指數階(迴圈實現)*/
|
||
|
func exponential(n int) int {
|
||
|
count, base := 0, 1
|
||
|
// 細胞每輪一分為二,形成數列 1, 2, 4, 8, ..., 2^(n-1)
|
||
|
for i := 0; i < n; i++ {
|
||
|
for j := 0; j < base; j++ {
|
||
|
count++
|
||
|
}
|
||
|
base *= 2
|
||
|
}
|
||
|
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
|
||
|
return count
|
||
|
}
|
||
|
|
||
|
/* 指數階(遞迴實現)*/
|
||
|
func expRecur(n int) int {
|
||
|
if n == 1 {
|
||
|
return 1
|
||
|
}
|
||
|
return expRecur(n-1) + expRecur(n-1) + 1
|
||
|
}
|
||
|
|
||
|
/* 對數階(迴圈實現)*/
|
||
|
func logarithmic(n int) int {
|
||
|
count := 0
|
||
|
for n > 1 {
|
||
|
n = n / 2
|
||
|
count++
|
||
|
}
|
||
|
return count
|
||
|
}
|
||
|
|
||
|
/* 對數階(遞迴實現)*/
|
||
|
func logRecur(n int) int {
|
||
|
if n <= 1 {
|
||
|
return 0
|
||
|
}
|
||
|
return logRecur(n/2) + 1
|
||
|
}
|
||
|
|
||
|
/* 線性對數階 */
|
||
|
func linearLogRecur(n int) int {
|
||
|
if n <= 1 {
|
||
|
return 1
|
||
|
}
|
||
|
count := linearLogRecur(n/2) + linearLogRecur(n/2)
|
||
|
for i := 0; i < n; i++ {
|
||
|
count++
|
||
|
}
|
||
|
return count
|
||
|
}
|
||
|
|
||
|
/* 階乘階(遞迴實現) */
|
||
|
func factorialRecur(n int) int {
|
||
|
if n == 0 {
|
||
|
return 1
|
||
|
}
|
||
|
count := 0
|
||
|
// 從 1 個分裂出 n 個
|
||
|
for i := 0; i < n; i++ {
|
||
|
count += factorialRecur(n - 1)
|
||
|
}
|
||
|
return count
|
||
|
}
|