mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-27 14:16:29 +08:00
91 lines
1.9 KiB
Python
91 lines
1.9 KiB
Python
|
"""
|
||
|
File: space_complexity.py
|
||
|
Created Time: 2022-11-25
|
||
|
Author: krahets (krahets@163.com)
|
||
|
"""
|
||
|
|
||
|
import sys
|
||
|
from pathlib import Path
|
||
|
|
||
|
sys.path.append(str(Path(__file__).parent.parent))
|
||
|
from modules import ListNode, TreeNode, print_tree
|
||
|
|
||
|
|
||
|
def function() -> int:
|
||
|
"""Function"""
|
||
|
# Perform some operations
|
||
|
return 0
|
||
|
|
||
|
|
||
|
def constant(n: int):
|
||
|
"""Constant complexity"""
|
||
|
# Constants, variables, objects occupy O(1) space
|
||
|
a = 0
|
||
|
nums = [0] * 10000
|
||
|
node = ListNode(0)
|
||
|
# Variables in a loop occupy O(1) space
|
||
|
for _ in range(n):
|
||
|
c = 0
|
||
|
# Functions in a loop occupy O(1) space
|
||
|
for _ in range(n):
|
||
|
function()
|
||
|
|
||
|
|
||
|
def linear(n: int):
|
||
|
"""Linear complexity"""
|
||
|
# A list of length n occupies O(n) space
|
||
|
nums = [0] * n
|
||
|
# A hash table of length n occupies O(n) space
|
||
|
hmap = dict[int, str]()
|
||
|
for i in range(n):
|
||
|
hmap[i] = str(i)
|
||
|
|
||
|
|
||
|
def linear_recur(n: int):
|
||
|
"""Linear complexity (recursive implementation)"""
|
||
|
print("Recursive n =", n)
|
||
|
if n == 1:
|
||
|
return
|
||
|
linear_recur(n - 1)
|
||
|
|
||
|
|
||
|
def quadratic(n: int):
|
||
|
"""Quadratic complexity"""
|
||
|
# A two-dimensional list occupies O(n^2) space
|
||
|
num_matrix = [[0] * n for _ in range(n)]
|
||
|
|
||
|
|
||
|
def quadratic_recur(n: int) -> int:
|
||
|
"""Quadratic complexity (recursive implementation)"""
|
||
|
if n <= 0:
|
||
|
return 0
|
||
|
# Array nums length = n, n-1, ..., 2, 1
|
||
|
nums = [0] * n
|
||
|
return quadratic_recur(n - 1)
|
||
|
|
||
|
|
||
|
def build_tree(n: int) -> TreeNode | None:
|
||
|
"""Exponential complexity (building a full binary tree)"""
|
||
|
if n == 0:
|
||
|
return None
|
||
|
root = TreeNode(0)
|
||
|
root.left = build_tree(n - 1)
|
||
|
root.right = build_tree(n - 1)
|
||
|
return root
|
||
|
|
||
|
|
||
|
"""Driver Code"""
|
||
|
if __name__ == "__main__":
|
||
|
n = 5
|
||
|
# Constant complexity
|
||
|
constant(n)
|
||
|
# Linear complexity
|
||
|
linear(n)
|
||
|
linear_recur(n)
|
||
|
# Quadratic complexity
|
||
|
quadratic(n)
|
||
|
quadratic_recur(n)
|
||
|
# Exponential complexity
|
||
|
root = build_tree(n)
|
||
|
print_tree(root)
|